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Thermodynamics of ideal gases in quasistatic electromagnetic fields
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The thermodynamics of ideal gases in the presence of quasistatic electromagnetic fields is considered. It is
shown that thermodynamic properties of continua, in the presence of these fields, can be characterized by two
conjugate sets of variables consisting of three extensive field-independent, and three intensive field-dependent
variables. These sets are entropy, volume, and masg,S,¥.,N}, and field-dependent temperature, pressure,
and chemical potential, i.e{T,P,{}, respectively. The second set has the same thermodynamic role as
{T,P,{} that prevails in the absence of fields. In this cont@xtP, and{ must be uniform at equilibrium and,
consequentlyT, P, and{ can have discontinuous jumps across interfaces that separate materials of different
electromagnetic properties. Ideal gases that follow the Langevin equation are affected byEafietédso that
T increases, whereas both and { decrease as compared to their values in the absence of the field. The
equation of state of ideal gases in fields has been formulated in terisanél P. Using this equation, it is
shown that the change in the press&rewhich is induced by the field, is positive at fix&] whereas it is
negative, but smaller, iH is fixed. Magnetic susceptibilities are defined at either fixed density, or at fixed
pressure as two distinct and different thermodynamic variables. The susceptibility at fixed density follows the
Curie-Wiess law. In contrast, the one defined at fixed pressure, being inversely proportional to the temperature
squared, follows a different law. The fundamental equation of ideal gases in the presence of magnetic fields is
derived. The field-dependent energyis shown to be a function d§, V, andN and of the field-dependent
entropy S, and vice versa. Bottd and S are functions ofS, V, and N and the magnetic inductioB.
Field-dependent specific heats of ideal gases, and relations between them, have been formulated under different
constraints. At fixed, the field-induced increase in the specific heat is proportional to the ratio of magnetic to
thermal energy squared. Ideal gases that are contained in discrete systems, under the action of magnetic fields,
follow an equation of state that can be different than the one which is applicable for cases involving continua.
This equation of state is not unique in the sense that it consists of field-dependent variables which are functions
of the geometry of the discrete system, and their forms vary according to the constraints imposed on the
discrete system and its surroundings. In the presence of fixed intensity magnetic fields, mixtures of permeable
ideal gases are shown to satisfy the Gibbs theorem, and, atBixdeir entropy of mixing is larger than the
value prevailing when the field is absent. Finally, the formulas and results obtained for ideal gases in magnetic
fields can be applied to ideal gases in electric fields, through appropriate replacement of magnetic variables by
their electric counterpart$S1063-651X96)08110-X

PACS numbsd(s): 51.30+i

INTRODUCTION [1] was followed by system analysis of field-dependent ther-
modynamic variables and Maxwell relatiof]. The analy-
Recently the theory of thermodynamics in the presence ogsis_of well defined systems provide.d a direct test and a better
electromagnetic fields has been formulafigH It was shown  insight as to the validity and meaning of the field-dependent

that in a lossless ideal system the electromagnetic energy essudre ?rt\d chemtical pottehnti?:]._ '(Ij‘hf_e sz(ijstencg Oft a fi_elt()jl-
must be a state function that has an exact differential. Fur- cPendent temperature as the third field-depéndent variable

thermore, it is this differential that must be added to theVas not considered as yet, due to the need to find its physical

energy differential prevailing in the absence of the field. InJlJ‘Q’t'f'C"’Itlon and meaning. In this work an attempt is made to

this way the sum remains an exact differential of a statéjerive a complete set of field-dependent thermodynamic

function that stands for the overall internal energy. Thevariables(e.g., inclusive of the field-dependent temperature

theory provides different formulations for the field- and then use it to obtain the fundamental equation and equa-

dependent pressure and chemical potential under differeiipns of state of ideal gases, in a quasistatic electromagnetic

field constraints. The case of discrete systems, where part 'Fld'

all of the field energy can be stored outside the physical THEORY

boundaries of a thermodynamic systéwhich is the source

of this field), has been defined with respect to the relation The theory is first developed for the case of gases that
between energy and its source. The field energy stored outerm a continuum in the field, and then for the case of gases
side the boundaries of a system, which is identified as its soleontained in a discrete system. The ideal gases are assumed
source, is accounted for as pertaining to this source. Thisis@ be electromagnetically linear, and the electromagnetic
consequence of the need to integrate the energy of a fieliields are quasistatic. We develop the theory in detail for
source over the whole space that is energized due to its pregases in magnetoquasistatic fields and then show how to
ence. The theory of thermodynamics in the presence of fieldsansform the results and formulate the electric counterpart.
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A. Uniform and isotropic continuum

Formulation of variables

4925

U=TS—PV+¢N. (11)

In the presence of the magnetic figlsee Appendix A for

In what follows the ideal gas is contained in a system thafyrther detail,
forms a uniform and isotropic continuum with respect to the

field. Such a system can, for example, be a thin hollow toroid

U=U+Uy=TS—PV+{N+U,, (12)

that is filled with the gas. The magnetic energy of the system

is given by
Un=3VBu= 3VuH?, 1)

B=puH, i)

whereH, u, andB are the magnetic field intensity, perme-

whereU is the field-dependent overall energy, ahdP, and
{ are the temperature, pressure, and chemical potential in the
absence of the field.

The differentials olU and ofU,, are both exact, but they
are different in the sense thdU is given by

dU=TdS-P dV+¢dN. (13)

ability, and magnetic induction, respectively. Note that, here ) )
and henceforth, vectors are denoted by boldface fontsSince the Gibbs-Duhem equation holds,
whereas their moduli by regular fonts. The magnetic energy

Uy, is fully contained in the volum& whereH and u are
uniform andu is independent oH. The permeabilityu is a
function of the density and temperatur@& of the gas,

w=u(p,T). ()

The temperature is a function of the entroBythe volume
V, and the mole numbeN,

T=T(S,V,N). 4
The density is given by
p=NI/V. 5
By virtue of Egs.(3), (4), and(5), we have
w=pu(S,V,N), (6)
and hence

()

The differential ofU,, can be presented in the following two

forms. The first form is obtained from E({l) by selectingV,
B, and u as the independent variables,

1B? B 1 B2
dUM(V,B,M):Ede-FV;dB—EV?d,&. (8)

Combining Eqs(2) and(8) gives
dUpn(V,B,u)=%H-B dV+VH-dB—3VH?%du. (9)

The second form is obtained from E{) by selectingv, H,
and u as the independent variables. The result is

dUy(V,H,u)=%H-B dV+VB-dH+1VH2du. (10)

For example, at fixed/ and B, Egs. (9) and (10), using
dH=d(B/w), yield —3VH?du, whereas at fixed/ and H,
usingdB=d(uH), the result issVH2d . Thus at fixedv and

—SdT+VdP—Nd¢=0, (14)

whereasdU,, is given either by Eq(9) or by (10). Differ-
entiation of Eq.(12) in conjunction with Eqs(7), (9), and
(13) yields

dU=TdS-PdV+ZdN+VH-dB, (15)

where 'i', I5, andz are field-dependent intensive variables
which are defined, at fixeB, as follows:
T=(0U1S)y np=T— 2VHX(uldS)yn,  (16)

P=—(aUldV)gn =P+ 2VHX ! V)gn— 2 uH2,
(17)
{=(UIdN)sy g={~ VH(aulN)sy.  (18)

Expressing these variables in terms of specific entppd
densityp gives

- 1
T=T— 5= H%(dulds)y .,

5 (19)
P=P—3 H?p(auldp)sn—3uH? (20
{=0—YH%ouldp)sy (21)

where
s=S/N. (22

The use of the energy differentigih the form given by Eqg.
(15)] for derivation of Eq.(12) is described in Appendix A.
Note that if the condition of fixed implies that the flux
linkage with the current source is also fixed, then no field-
related exchange of energy between the current source and
the system is allowed. This means that, at fixed magnetic
flux, the system is limited to exchange of energy with its
surroundings but not with its current source. Equaticdr®—
(21) show that for materials that are characterized by

B, a positive change i decreases the magnetic energy, (du/ds)y n<0, (du/dp)sn=0, (du/dp)sy>0, and are held at

whereas the reverse is trueHf instead oB, is held fixed. In
the absence of the field, the internal energy is given by

fixedB, T>T, P<P, and{</. If H instead ofB is set fixed,
then energy exchanges between the system and current



4926 Y. ZIMMELS 54

source occurs, the consequence being that the signs of tlifferential in the presence of the field. The fourth differen-

terms that involve a derivative gk are reversed. Thus, at tial stands for the energy change at fix@dv, andN. As no

fixed H, entropy, volume, and mass changes are allowed, this energy
change must involve change of flux, or alternatively, a

s 1 . change of magnetization due to the exclusive interaction be-
T=T+ 2p Hplds)y.n, (23 {ween the current sources and the system being polarized. It
follows thatVH-dB is indeed the magnetization work differ-
|5=P+%H2p(t9ﬂ/o7p)s,m—%MH2, (24) ential of the current sources. o
_Although Eq.(15) can be integrated at variabl&sP, and
2:§+%H2((9M/(7P)s,v- (25) ¢ to retrieve Eq.(12), it cannot be Euler integrated, i.e.,

holding T, P, and ¢ fixed, for the same purpose. It follows
Note that in deriving Eq(20) from Eq.(17), use was made that, in general, except for the calde=0,

of ~ - - -
U#TS—PV+{N+3iVuH?. (27)

(Il V) gn= (Il dp) sn(Ipl V) s N _ , . .
The integration of Eq(15) can readily be carried out by
=—(pIV)(dpldp)sn- (26)  separating, and then grouping according to type, the field-
) ) ) ) A independent and field-dependent terms, so that each group
Equation(15), in conjunction withT [see Eqs(16), (19), and  pecomes an exact differential. The field-independent group
(23) for its alternative formkshows that in the presence of can be Euler integrate@i.e., holdingT, P, and¢ fixed), but

the field, the heat differential which is delivered to the sys-ye fig|d-dependent differential must be integrated as one ex-
tem isTdSand notTdS Recall thafTdSis the heat differ- 5 gifferential. This integration retrieves EA.2).

ential in the absence of fields. It follows that the excess inthe  Tpe analysis presented hitherto includes_the contribution

heat differential due to the field iST¢-T)dS. of free space to the magnetic energy. Sificeand ¢ are

An attempt to identify TdS [where S is the field-  f,ctions of partial derivatives g, they give the net effect
dependent entrophl] which is given below by Eq(71)]as ¢ the gas(i.e., independent of the energy stored in free
the heat differential instead afd Swill show that, at fixedS, spacé. However p depends on the term.H2, which

V, N, andB, it vanishes. It follows thab cannot replac&as  h¢jydes the effect of free space. It follows that the net effect
the fundamental and independent entropic variable, Tt ¢ (he gas, i.e., with respect to the field-dependent pressure,
is indeed the heat differential in the presence of the fieldig gptained once the term-1uH? is replaced either by

also see the discussion of the more general perspective of Egr'%BZ[(ll,u)—(ll,uo)], or by —(u—pugH? for the cases
(15) below. L _ -~ where eitheB or H are held fixed, respectively.
Fyr@herm_ore, it is important to realize that the 3etP, Using the variableu', which is defined by
and ¢ is defined by Eqgs(19)—(21) and by Eqs.(23)—(25),
exclusively for the constraints of fixd8landH, respectively. w'=p— o, (28
This limits their use only for those processes that conform
with one of the above constraints. For example, if a procesthe net effect of the gas is obtained if, in the teruH?, u
simultaneously involves variabl® andH, then Eqs(19)— is replaced either by-uu'/uy or by u' for the cases in
(21) and (23)—(25) cannot be applied directly. However, which eitherB or H is held fixed, respectively. The variables
since the energy is a state function it can be analyzed by firg¢ and{ have been defined elsewhere alreftly However,
holding B fixed and lettingH vary, and then holding fixed T has not yet been defined explicitly, and its physical impli-
and lettingB vary, so that the final values ¢1 andB are  cations need further considerations.
reached. If (du/ds)y <O, as is the case with ideal gases, then at
In a more general perspective, H45) gives the differ- fixed B, T>T, whereas at fixeti, T<T. In the former case,
ential of the field-dependent internal energy in terms of foura decrease i due to an increase mincreases$i and hence
distinct and independent differentials. Each of these differalso the entropic part of the magnetic energy. This gives an
entials has_a clear physical meaning as follows. The firsoverall effect of an increased field-dependent temperature. In
differential TdS stands for the energy change at fiXédN  the latter case, i.e., fixeH, the reverse is true. At fixeB,
andB (i.e., fixed fluy. As no volume, mass, and magnetic which here implies fixed fluxT represents the exclusive ef-
flux changes are allowed, this energy change must involvéect of the field on matter which is under its action. In con-
heat exclusively. It follows thaTdS is indeed the heat dif- trast, at fixedH, T also involves the effect of the current
ferential in the presence of the field. The second differentiabource. In this respect, the pure effect of the field is to in-
—PdV stands for the energy change at fixgdN, andB. As  crease the temperature of matter for whiehu(ds), <O
no entropy, mass, and magnetic flux changes are allowedholds. Nevertheless, according to the formal definition of
this energy change must involve pressure-volume, or, altettemperature, the two different field constraints yield two dif-
natively, mechanical work exclusively. It follows thatPdV  ferent field-dependent temperatures. These temperatures re-
is indeed the pressure-volume or mechanical work differenflect the different rates of change of the field-dependent en-
tial in the presence of the field. The third differentialN  ergy with the field-independent entropy. These different rates
stands for the energy change at fix8dV, andB. As no  arise when different field constraints are imposed on the sys-
entropy, volume, and magnetic flux changes are allowed, thieem and its current source. For further details, on derivations
energy change must involve mass transfer exclusively. It foland properties of derivatives df, P, and { with respect to
lows that/dN is indeed the mass transfer enefgy work) H; see Appendix B. FormallyT, P, and { are a set that
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characterizes the thermodynamic system in the same wast fixedH, or
that the sefl, P, and{ characterizes this system in the ab-
sence of fields. Thus, using this formalisi, P, and{ can
be considered as the field-dependent temperature, pressure,
and chemical potential of the continuum. Using these inten- .
sive variables as ordinary thermodynamic variables suggeswhereu=U/N andug=U4/N.
that, at equilibrium;T, P, and/ be uniform across the sys-  Thus Eq.(29) is the “energy equation of state” in a fixed
tem. This has been stated already Foand{ elsewherd1], B field, whereas Eq30) is its counterpart in a fixeHl field.
the consequence being that there can be a junf and/  Equation(29) shows also that in a fixe® field, Uy is a
across interfaces separating materials of different magnetidecreasing function of.’. The reverse is true in a fixed
properties. The uniformity of suggests that, in the presence field [see Eq(30)].
of electromagnetic fieldsT may also have a jump across  The pressure of the gas is readily obtained as
such interfaces. The existence of such jumps, i.e., in each . -
variable of the sefl, P, and ¢ due toT, P, and ¢ being Py=—(Uq4/V)sn
uniform at equilibrium across interfaces, means that, atthe _ 5 1,,2 1 2 :
instant the field is removed,, P, andZ must be nonuniform =P=zH%(Inldp)sntap H (wluo), B fixed,
across these interfaces. This gives rise to driving forces that (31
act to change the position of the interfaces, and cause a flow | .
of heat and matter across them. This important observation ~ Pg=—(dUg4/dV)gn n
can be formulated as the following corollary. . . ) _

Systems that have different electromagnetic properties, =P+3H%p(duldp)sn— 3 n'H%, H fixed. (32)
and share a common interface, are driven to change their . .
equilibrium position and exchange heat and matter acrosgduation (31) shows that if u'u/uo>p(duldp)sn, then
this interface, when the field acting on them is removed. InPg— P=0, and the effect of the field is to increase the pres-
this sense, removal of the field drives systems, which havéure of the gas. As shown below this indeed is the case for
different electromagnetic properties and share a common if2érmeable gases. Recalling that in the absence of the field
terface, to change the way their field-independent energie8 =PRT, the second equation of state can be obtained by
are partitioned. The actual realization and outcome of thi€limination of T between Eqgs(19) and (31) in a fixed B
drive depends on constraints that are imposed on both syfi€ld, and between Eq¢23) and(32) in a fixedH field. The

tems and their common interface. In the same contexinif resultis
the absence of fieldsa system is at equilibrium and, P, S ,
and ¢ are uniform, then at the instant a field is imposed on Pg=PRT+2H [Roulas)yn+u' wl o= p(dnldp)sn]
this system.T, P, and £ are nonuniform. It follows that a (33
change inT,. _P,.andg must occur i.f.th_e system is 1o shift 4t fixed B, and
back to equilibrium. When this equilibrium is reachdd,P,
and £ become uniform, whilel', P, and{ turn nonuniform. Py=pRT—3HZ[R(9uldS)y N+ 1" — p(3pl dp)sn]
Having defined the set of field-dependent thermodynamic
variables, we next formulate the equations of state and the
entropic fundamental equation of gas in the presence of that fixed H. At either H=0 or u=pu,, Egs. (33) and (34)
field. reduce toP=pRT, as expected.

For monatomic ideal gas¢8],

=+ o ' H2 30b
ug_U+ZILL ) (30b)

Formulation of equations of state

The first equation of state involves the energy of the gas. (sl IT)y n=
The magnetic energy as given by H@) includes the con-
tribution of free space. 'I_'hus, in order to obtain the net eNience using
ergy due to the gas, it is necessary to subtract the energy
stored in free space. The value of this net energy of matter (pl 3S)y n= (Il 9T )y N (351 TT)y N (36)
depends on the constraints which are imposed on it, e.g., ' ' '

whetherB or H is held fixed. Thus the net energl,, dueto  gives

R
T (35

N w

the gas is
(9l 3S)y n=(2TI3R) (Il IT)y - (37)
ng U+ %VBZ( %— M—()) =U—3Vu'H*(ul po) The permeability is a linear function of the susceptibility
(299 w=po(1+x), (38)
at fixedB, or \|/_|vherex is defined as the ratio of magnetizatibhand field
== 5o 1), @ i .

Ug=U+% Vu'H2, (309 M=B/uo—H. (40)
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The magnetization of an ideal gas is assumed here to follownary, the susceptibility of ideal gases that satisfy the Lange-

the Langevin equatiof¥] vin equation follows two different laws depending pror P
being fixed. The Curie-Weiss law is followed only at fixed
M =Mg(cotha—1/a), (41)  put not at fixedP, where the susceptibility varies with T8,
- In what follows we use Eq.3), and hence the derivatives of
Ms=Nm=pNm, (42 u are evaluated either at fixgdor at fixedT,
where M is the saturation magnetizatioN, is the number du=(duldp)rdp+(aulaT),dT. (51

density(i.e., per unit volumgof the gas moleculesn is the
dipole moment of a single moleculd, is Avogadro’s num-  Thus Eq.(45) must be used for evaluation &fu/dT),, as is
ber, anda is defined by done below. Furthermore, henceforéla/dp anddu/dT stand
for (duldp)y and (duldT),,
a= ugmH/kT, (43
Al 9T = podx! 9T=— woClT?=— puox!T=—u'IT.
wherek is the Boltzmann constant. (52
At room temperature, the value @af for ideal gases is ) )

expected to be small. This facilitates the use of the followingAgain, by virtue of Eqs(38), (39), (42, and (44), and at
approximation which holds foa<1: fixed T, w is a linear function of,

a7 (pom)?

mH
Fo a<l. (44) p=Kp+uo, K=3N-" =, (53

kT

M=1Ma=iM,

By virtue of Eq.(39), the susceptibility of the gas is obtained Where at fixedT, K is a constant. Hence

from Eq. (44) as dulop=K=u'lp. (54)

x=CIT, (45) Combining Egs(31) and(54) gives

whereC is a function ofp via its dependence oM, - L oo .
Py=P+32u'H%(u/uo—1), B fixed. (55

= =1 =1 Nuam?
C=Clp)=3Mspom/k=35pNuom-/k. 46 Combining Eqs(32) and (54) gives

Note that by introducing the rightmost side of Ed6), it is A
implied thatm>0. If m<0, as is the case for diamagnetic Py=P, (56)

gases, the€(p) would be negative. For the sake of simplic- whereP=pRT holds. Note that the derivation of Eq&5)

g’nvl\;ee 2isggie%e£fforth that>0. The Curie-Weiss law and(56) [as well as Eqs(59) and(60) below] implies equal-
P ity between(du/dp)r and (duldp)sy; see Appendix C for

Y=C'I(T—6), (47)  proof and details. Equatiofs5) shows that ifB is set fixed,
then for gases that are permeaBlg>pRT, and hence the
whereC’ and 6 are constants. field acts so as to increase the pressure; i.e., above its value

It is seen that the gas follows the Curie-Weiss law i5 P at H=0. In contrast, Eq(56) shows that, at fixed,
fixed and if, in Eq.(47), 6=0. In this caseC’'=C. Since = Py=pRT, irrespective of the gas permeability and the field.
p=1lv, settingp fixed is equivalent to imposing a fixed spe- Note that Eq.(55) is an equation of state having the form
cific volume v. Thus, under the condition of fixeg, and ~ Py=Pgy(p,T,H). Here the field-dependent pressure is a func-
hence also of fixed, the susceptibility is defined as one tion of the field-independent tgmperatuT‘eand the fieldH.
pertaining to matter that is held at fixed However, if P This constitutes dependence Bf on mixed variables, i.e.,

instead ofp is held fixed, and the use gf=P/RT as an  on one which is independent of the field and the other which
approximation is justifiedas indeed is the case since thejs the field strength.
field effect in gases is expected to be smédenC becomes Combining Egs(19), (37), and(52) gives
an inverse function of,
~ 1

C(T)=3Puo(m/k)%T, P=const. (49) T=T+3P—RM'H2, B fixed. (57)
In this case the susceptibility, e.g., at fixed pressure, is al ‘o .
inverse function off2 ﬁombmmg Eqgs(23), (37), and(52) gives

n 1
x=C"IT?, P=const, (49) T=T—=—— u'H2, H fixed. (58)

C"= 3P uo(m/k)?. 50 : . : ,
3P ol ) (50 Equations(57) and (58) show that if a monatomic gas is

Thus Eqgs(45) and(49) define the susceptibility at fixedv, permeable, then, at fixe®l, T>T, whereas at fixeti, T<T.

i.e., x=x,, and at fixedP, i.e., x=x,, respectively. This For ideal gases that follow the Langevin equation, substitu-

seems to offer the magnetic counterpart of the specific heat &ibn of Eq.(54) into Eq.(33) for the case of fixed®, and into

fixedv and at fixedP, i.e.,c, andc, respectively. In sum- Eq. (34) for the case of fixed give
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Py=pRT+tHZR(IuldS)y N+ p' (ulpo—1)], B fixed,
(59

Py=pRT—sH?R(dulds)yy, H fixed.  (60)

If these gases are also monatomic, then Bd) holds, and
upon its substitutiofiin conjunction with Eq(52)] into Egs.
(59) and(60) we obtain

Py=pRT+1u HY u/py—5/3], B fixed, (61)

Pg=pRT+1u'H2, H fixed. (62

Note that, as shown in E¢52), u' is an inverse function of
T!

u'=uoCIT. (63

Thus, eliminatindl’ between Eq957) (at fixedB) or (58) (at
fixed H) and (63), gives the following quadric equations in

JI

R H%(u')2—Tu'+ueC=0, B fixed, (64)
1 20, 1\2 T, ! — ;
3p_RH (u")+Tu'—ueC=0, H fixed. (65
Solution of " as a function ofp, 'AI', andH gives
w'=u(p,TH). (66)
Sinceu=pu'+puy, we also have
p=p(p,TH). (67)

Hence Eqgs(61) and(62), in conjunction with Eqs(66) and
(67), present an equation of state whétgis a function of,
p, T, andH,

Py=Pg4(p,T,H). (69
Thus, in contrast to E¢55), herelsgJ is a function of field-
dependent temperatuflerather than of the field-independent
T. This eliminates the dependenceRyf on mixed variables,
which is characteristic of Eq55).

Fundamental equation

In the absence of fields, the fundamental equation can be

expressed in the following equivalent forms:

U=U(S,V,N), (69)

S=S(U,V,N). (70
In the presence of the fielt) andS are replaced by and
S. However, as shown below, the functional relationship o
Egs. (69 and(70), i.e., U=U(S,V,N) and S=S(U,V,N),
does not hold. .

At fixed B the field-dependent entrop$ is given by
[11516]
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~ B2 (du
= 1
S=S+3V 7,“« (z?T)p' (71

At fixed H the sign of the magnetic term is reversed. Multi-
plying both sides of Eq(71) by T gives

7,

aT
It is clear thatT(du/dT), can be presented in terms of

2

. B
TS=TS+1v il (72)

T(ouldT),=a(S,V,N)u(S,V,N)+ B(S,V,N), (73
where a(S,V,N) and B(S,V,N) are factors accounting for
the possible nonlinear dependenceuwbn T. Note that for
ideal gases, using E@¢52), we find thatT(du/dT),=—u’',
and hencdsee Eq(28)] in this casea and 8 are constants:
a(S,V,N)=—1 and B(S,V,N)=pu,. By virtue of Egs.(1),
(2), and(12), Eq. (72) can be expressed as

TS=TS—(a+Blu)U+(a+B/w)U. (74)
SinceT, «, B, andU are all functions ofS, V, andN, it
follows that

S=S(S,V,N,U), (75)

and hence

U=U(S,V,N,S). (76)

In the absence of field)=U and S=S and Eqs.75) and

(76) reduce to Egs(70) and(69), respectively. However, in

the presence of the fiel8 is a function of four variables,
three of which are field independent, and the fourttUis
Similarly, U is a function of the same field-independent vari-
ables ands. The fourth field-dependent variable, by its very
nature, is a consequence of the presence of the field. Equa-
tions (75) and (76) can be derived using the following dif-
ferent approach. By virtue of Eq&) and(8)

Uu=Un(V,B,u)=Uu(S,V,N,B). 77
Hence[see Eqgs(1) and(12)]
U=U(S,V,N,B). (79)
Equation(71) in conjunction with Eq.(6) shows that
S=S(S,V,N,B). (79

Eliminating B between Eqs(78) and (79) yields Eqgs.(75)
and(76).

Note that, by virtue of Eq916)—(18) in conjunction with
Eqgs.(76) and(78), the field-dependent variablés P, and{
are also functions of the s& V, N, andS or its equivalent
S, V, N, and B. In the absence of the field, the entropic
fformulation of the fundamental equation for ideal monatomic
gas is given by 3]

U
s=5,+3iR In TO+RIn - (80)

(o]



4930

Y. ZIMMELS 54

where the subscripd indicates a reference state. Hence, inFor the case of an ideal gas,

the presence of a magnetic field,

. T (-DX  _[ou
=g 42 _ _ 2|
S=5,+ RInT +Rlnvo+ % H([ﬂ_ p, (81
where, at fixedB, k=0, whereas at fixetH, k=1.
The energy density of the gas is given by
u=3RT. (82

Solving Eq.(82) for T and substituting the result in E1)
gives

u v (=1
RIn—+RIn—+

S=Sot+5
°© 2 U, ve 2p

I
HZ( aT) (83

The information in Eq(83) will be complete once the func-

tional dependence @bu/dT), on u andu is known. Such a
relation is given by Eq(52), which can be presentddsing
Eqg. (82)] as a function ofu’ andu in the following form:

2u
(8#/3T)p=—ﬂ,/(§§).

Using Eq.(29b) and combining Eq983) (for k=0) and(84)
gives

(84)

3 u v
RIn—+RIn—
2 Ug Uo

. 2u
+ (ug—u)/ §§)

where, by virtue of Eqs(38), (45), and (82), u=u(1+C/
[5(u/R))). Recalling thatu=u(s,v) andu=u(s,v,B), it is
seen that

S=sp+3

Mo

—, B fixed, (85
s

$=5(s,v,0)=5(s,v,B). (86)
Equation(86) is equivalent to Egs(75) and (79). Similar
reasoning leads to the same conclusion wHeinstead ofB
is held fixed.

du=c,dT, (90)
where in the case of a monatomic gas,
c,=3R. (91)
It follows that[see Eq.(1)]
olachdT+o|(i ,uH2>. (92)
2p
At fixed B andp (sincev=1/p is fixed),
dug=|c,— 1 H2(duldT) }dT (93
2p p

Equation(93) facilitates the definition of the following field-
dependent specific heat at fix8dandv,

1
Cop=Co 5, H(auldT) ,=c,+ sR(uomH/KT)%
(94)

The counterpart o€, g at fixedH andv is

A 1
CpH=Cyt+ 5~ H (Il dT) =

2 ¢, — ER(oMH/KT)2,

(99

where, in deriving the right-hand side of E¢94) and(95),
use was made of Eq#45), (46), and(52). It follows that
di=c, zdT, (96)
where,B B at fixed B, whereasB=H at fixedH. Note that
¢, g is larger thart, ,; by —(1/p)H? (duldT),. This reflects
the fact that when matter is heated ty, at fixed B, its
energy increases by(1/2p)H2(aM/(9T)pdT, whereas the re-
verse applies wheH is held fixed.
In the case of ideal gaseg,can be presented as a func-
tion of P and T, instead ofp and T as given by Eq(51).
Using this form ofu gives

At fixed B the energy representation of the fundamental

equation can be obtained by combining E@Qb) and (82),
and the solution of, i.e., T=T(s,v,s), from Eq.(81),

<3 i 2
u=3RT(s,v,5)— 2p M "H(wl po)- 87

Since the magnetic term is also a functiorspb, andB, and
hence also 08, v, ands, we have

u=1ua(s,v,8)=u(s,v,B). (89
Equation(898) is equivalent to Eqs(76) and (78).

Specific heat in the presence of field
The specific heat at fixed volume is defined by

1/dQ
oxar

(89)
dT/,,

du=(0uldP)rdP+ (duldT)pdT. (97
Thus in order to define a specific heat at fixed pressure in the
presence of the field, it is sufficient to replace, in E@s)
and(95), ¢, by cp and(du/dT), by (du/dT)p . Substitution
of Egs.(49) and(50) in Eq. (38) and then differentiating the
result at fixedP gives

(Oul dT)p=—5pR(puom/kT)?, (98)
Hence the counterparts of Eq94) and(95) for the case of
fixed P are

Cp5=Cpt 3R(oMH/KT)?, (99

Cp.u=Cp— 3R(poMH/KT)?, (100
Subtracting Eq.(94) from Eq. (99), and recalling that
cp—C,=R, gives



54 THERMODYNAMICS OF IDEAL GASES N.... 4931

ép,s—év,BZCp—Cﬁ%R(MomH/kT)z Mq- The permeability outside the spheregs. The sphere
L ) maintains its shape irrespective of its volume. This is a con-
=R[1+5(nomH/KT)?], (10D straint related to the shape of a discrete system, and here the

sphere volume can only be changed at fixed shape, i.e., no
distortion in the latter is allowed. Differentiation of EG.03

Cp.i—Cyp.=Cp—C,— s R(oMH/KT)? followed by collection of terms gives
=R[1— #(uomH/KT)?2]. (102
_ 3u2
. . ) . ;1 M1— M2 5 1 M2 2
Equations(94) and (99) show that a fixed field increases dUy;=3u, o HodVi+35 V, (22 Hoduy
the field-dependent heat capacities at either fixeat fixed H1T a2 H1TeH2
P. The reverse is true iH instead ofB is held fixed. The ) W= 2y —2u2 ,
effect of the field at fixed pressure is twice as large as com- +3Vq PEETAL Hodw,
pared to the one at fixed specific volume. K17 eH2
M1 M2
+Viuy, ——— HodHg. (1049
142 wit 2, oUHo

B. Discrete systems

A hollow sphere, consisting of a thin spherical shell that ) N )
contains the gas and is placed in a uniform external figjd ~ The change in the permeabili;, i=1 and 2, can be ex-
is used here as an illustrative discrete system. The sphere R§essed afl]
denoted by subscript 1, and its surroundings by subscript 2.

It is shown elsewherg2] that the net magnetic energy 5 L ;
Uy, of this sphere(i.e., in excess of that prevailing in its A T ] :
absencgis given by d'u“'_( ﬁpi)T Vi (dN p,dV,)+( aTi)pdT"

i=1 and 2, (105
M1™ M2 5

Ul,,=xV —_— .
M1~ 2 1M2M1+2M2 0

(103 where subscriptd and p mean that the temperature and
density are held fixed in the region for which the derivative

This energy of the sphere consists of two parts that are storgd evaluated.

within and outside its boundaries. The spherical shell that Combining Egs. (104 and (105, and letting dV,

encloses the gas has the permeability and is thin to the =(dV,/dV;)dVy,  dN,=(dN,/dN;)dN;, and dT,

extent that any effect it might have on the field can be ne=(JT,/dT,)dT,, givesdUy,, as a function ofV, N;, T,

glected. The volume of the gasVg, and its permeability is andHg:

dUr = 1w 1 3uj Ipa _}ﬁuf—Zsz—ZM% Ipz| Ve H2dV
MITI2 M2 S 2, 2 (uat2pp)? Pt p1 . 2V, (mt2mp)? P2 p2 Tavl o=
+ 3—3,%% % +E\£M§_2M1M2_2M§ % 5_Nz HZdN + EV —3/-L§ %
2 (u1+2p2)% \ dpy N 2V, (u1+2pp)° dp2 T INg| 02 T (gt 2u0)? | 0T, ,
1 pi=2uipo=2p5 (ou,\ aTo| M1 o
+=V —| —=—|H§dT,+V ———— HydH,. 106
2 (1+2u2)° ap; ) gTy| 00 ET V2 oy, TR (106
|
Note that the use of partial derivatives, in the expressions %D:T+(3U(\41/051)v N Hos (107
[preceding Eq(106)] for dV,, dN,, anddT,, is due to the preo
option to hold different system variables fixed as these ex-
. . " L R ’
pressions vary. Specific cases, such as holMrgV,+V, PD:P—(5UM1/(9V1)51,N1,HO: (109

fixed, when evaluating'V,, are specified below.
Equation(106) facilitates the definition of the following

counterparts of Eqg19)—(21) for the case of a sphere in a - ,
fixed H,, field, {o={+(dUna/INDs v, e (109
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where subscripD indicates that the system is discrete:

Iy
dTq

3us
(1+2pu)?

1
(dUm1/9S)vy Ny 1= 5 Vi

p
aT,

Ty
p

Ipe
JaT,

ME =2y pp—2p5
(1+2pu)°

o[ IT1
XHO (9_81 , (110)

Vy,N; Hg

M1 M2

M2 — 5 —
p1t2um

1
(U1l V1), N,y H,= 5

Iy

2
3u;
)2 p1 apy

C (ua+2ps

.
B pi= 21— 2u5
Vo o (p1t2up)°
N,
EVA
T 1

H (111

1

, Iy
(0Un1/IND)s vy 1= 5

0
PlT

3u3
(m1+2u2)

Vi M= 225
Vo o (myt2up)?

I
J
P2 -

where in deriving Eq.(110 use was made ofdT;
=(dT1/9S1)v, Ny H,AS-

There are several combinations of constraints that can be
imposed on the sphere and the field that surrounds it. For

example, consider the following sets of constraints:
(a) Fixed V, N, and uniform temperature

V=V;+V,=const, (113
N=N;+N,=const, (114

From Egs.(113 and (114), dV,/dV,=dN,/dN;=—1, and
Eq. (115 gives dT,/dT,=1. Note that in the first, second,
and third partial derivativesy, N, and T are held fixed,
respectively.

Y. ZIMMELS

(b) Fixed V,, N, and uniform temperature
In this casegV,/dV,=0, IN,/IN;=—1, anddT,/dT,=1.

(c) Fixed V, N,, and uniform temperature
In this casegV,/dV,=—1, IN,/9dN;=0, anddT,/dT,=1.

If the sphere is insulated, thé, may be held at an arbi-
trary level compared t@,. Thus holdingT, fixed at variable
T, gives dT,/dT,=0, and the above sets can be repeated
subject to changingT,/dT, from 1 to O.

Suppose that no change is allowed in the surroundings of
the sphere as its own variables change. This meansd/that
N,, andT, and hence alsp, and u, are held fixed, a¥,

N;, andT, are varied. In this case it can readily be shown
that

(9U.13S,) L 2(%) (116
M1 ISV NG He T g T s V1,N1,H0,
, dpy
_(3UM1/0"V1)31,N1,H0:%H§P1<a_pl)T
1| (ma—p2)(ua+2p2) |,
S i g
(117
U/,lN _ipg 2 118
(dUpm1/IN1)s, v, v, =5H1 apr) .’ (118
whereH; is the field within the sphergt],
3u2
Hi=———— H. 119
Yougt2u, O 119

Comparing Egs(116—(118 and the respective magnetic
terms in Eqs(23)—(25) shows that they have similar forms.
The factor: in Egs.(23) and (25) is replaced by: in Egs.
(116 and(118. The same applies to the first magnetic term
on the right-hand side of Eq24), where the factor; is
replaced bys in the respective term of Eq117). In the
second magnetic term, the} is replaced by &
[(eq— po) (g +2u0) a1 0. These changes are a reflection of
the effect of the geometry of the sphere. Suppose that we
relax the constraint that no change in the surroundings of the
sphere is allowed. Instead we impose aedf constraints,
according to whichV and N are fixed andT;=T,=T is
uniform. Recalling that for this set of constraints
IVl V1= 3dN,/IN;=—1, we obtain
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HZ, (120

0

1 J 1 ui—2uipa—2p5 (4 aT
(‘9U|/v|1/‘931)v1,N1,H0:6_ %(ﬂ) - M Mlﬁzbz M2 (#) (_)
p1 9s1/, 18p; M2 aTa) \ds1/)

Iy (ma—m2) (1 +2um0) | Vi ui—2mipr—2p5 | dus,
—(dUy4/ V1) =tHip | —| — % += —=| H3,
(Ums 1)S; Ny Hy = 6M1P1 apy ] 18) M1 Lifls A M% P2 9ps : 1
(121)
, 1o ., 1 Vipf=2pipo—2p5 (dps) o,
(07UM1/0"N1)511V1’H0—€ (a_Pl)T 1_1_8\72 /.Lg 3_[)2 THl. (122

It is seen that changing the constraints results in a significant Applying Egs. (28) and (38) to the ith gas shows that
change in Eqs(116—(118). For example, ifu,/u, is suffi-  uox;=pw{ , and hence Eq124) takes the following conve-
ciently large, then Eq(122) is expected to yield a result that nient form:
is smaller than the one predicted by E#18).
The equation of state of the gas in the sphere can be ) ! )
M :Z:l Hi -

obtained by elimination off between Eqs(107) and (108 (129
following the substitution ofP=pRT in Eq. (108. This
gives Equation(125 indicates that, as regards permeabilities, the
- - , net contributions of the gases are additive, as expected.
Pp=pRTp—pR(dU\1/IS1)v, N, H, The same applies to the additivity of densities in the mix-
ture,
= (Ul V1)s N, Hy: (123
n
where the first and second partial derivatives are given by p=i§1 pi- (126

Egs. (110 and (111), respectively. Since these derivatives

depend on the constraints that are imposed on the sphere agthce ' =Kp and u/ =K;p;, it follows that

its surroundings, so does the equation of state of the gas

which is confined inside the sphere. In this sense this equa- n n

tion of state is not unique. K=2, Kipi/ > pi- (127)
Equations(107), (108, and (123 are general in form. =1 =1

Therefore, in the presence of the field, the equation of StatEquation (30) holds for this gas mixture, since it can be

of the gas(which is confined within a discrete systeim-  (eated as a uniform and continuous phase. This gives
volves effects due to the contents and constraints set on both

the system and its surroundings. Equati¢hs6)—(118 and U=U+ IVu'H2,

(120—(122) are specific examples how different sets of con-

straints(e.g., which are imposed on the sphere and its surwherey' satisfies Eq(125).

rounding$ produce different results for the partial deriva-  Using this result and the Gibbs theorem for the additivity

tives of Eq.(123), and hence also different equations of state.of energy in the absence of fields, i.&.==_,U;, in con-
junction with Eq.(125), gives

C. Mixture of ideal gases

n
If an ideal gas consists of a mixture of ideal gases, then, u =2 Ui, Ui=U;+3VuH2 (128
according to the Gibbs theorem, each gas in the mixture =1

behaves as if it were alone and independent of the othek; fixed H. the entropy of the mixture is given by E1)
gases. In such a mixture, the gases do not interact with eagfiih the sign of the magnetic term reverd@d Hence, using
other. In what follows, the validity of the Gibbs theorem in Eq. (125 in conjunction with Eq.(28) and applying the

the presence of electromagnetic fields is considered. Gibbs theorem for the additivity of entropy in the absence of
The permeability of a mixture consisting of different  figds ie. S==",S, gives

gases is given by
n

=S 'S S—g_LlyH2 9.
1+ $=3, 8. S=S—3VHom /i), (129
=1

M= Mo : (124

where here subscript implies thatp; is fixed.
where y; is the susceptibility of théth gas at the given It follows from Egs.(128 and (129 that the Gibbs theo-
temperature and pressuies 1,2,...1. rem for a mixture of ideal gases holds in the absence as well
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as in the presence of fixed intensity quasistatic magnetibaves as if it were along.e., irrespective of the presence of
fields. The effect of the field on the entropy of mixing is the other gasesit is sufficient to show that the expansion of
considered next. the ith gas(e.g., fromV; into the spaceV—V;, which is
Combining Egs.(45), (46), (52), and (71) for a one- initially free of this ga$ results in an increase of the perme-

component ideal gas that is in a fix&lfield, and using ability of V. Thus, disregarding the other gases, the problem
R=Nk, gives reduces to expansion of théh gas fromV; into the space

- which is free of it inV—V;.

S=S—zRN(uomH/KT)2. (130 Before the expansion, the averaged effective permeability

] o ] of the container systerti.e., of V) with respect to the exclu-
Suppose a rectangular container is divided intaompart-  gjye contribution of théth gas,u?, is given by

ments byn—1 planar, very thin, parallel partitions. Thigh

compartment containll; moles of theith gas, and the field 1 x5 1-x
there isH; . The container is placed in the field so tiBat=B ? = ; + 2o
is satisfied for alli, whereB is uniform and fixed. This is ! '
achieved by setting the partitions perpendiculaBtand by ~ Manipulating Eq.(136) in conjunction with Eq(53) for the
making the distance between partitions small as compared §gh gas, and using;=N,/V,, gives

their other dimensions, thus minimizing end effects, so that

. Xi=VilV. (136

they can be neglected. 1 KiNi/Vi+ po—xiKiN; 1V,
The total entropy of these separately held gases under a M_ia_ (KN /Vi+ po) o (137)
fixed B field is

After expansion, the permeability &f, e.g., with respect to

o . ) the exclusive contribution of thigh gas, has changed 1o,
S=2, [S—§RN(momH; k2. (131

= m=KiNi IV+ po. (139

Upon removal of the partitions and completion of mixing of e
all gases into one homogeneous and uniform mixture of vol-

umeV=X_,V;, the system aquires a different overall per- b, a | (L=X)KIN/Vi+ po || KiNi /V+ g
meability. The susceptibility of the mixture is the sum of the wil pi= KN IV, + g “o .
susceptibilities of the individual gases. This giese Egs. S (139

(45) and (46)]
] E%;Jatéi‘on (%?9) ) shows . hthatQ if ' Xi710’ then
1 pilwid=KiNi/(noV)+1, and hencérecalling that for per-
X=i=21 Clp)IT=13y R,uozzl Ni(mi/k)?/T. (132 meable gase&,>0) uP>u?. It follows that if we divide
each gas intoj; infinitesimally thin layers of thickness
Combining Egs(38) and(132) gives the permeability of the Ax;—0, so thatxi=2}1:1AXj , then[by Eq.(139] upon ex-
mixture as pansion, each thin layer contributes to the increase of the
permeability ofV. Thus, at fixedB, the expansion of all the
_ 2 n gaseous layers increases the permeability of the container
K=ot 3y Rizl Ni(pom; /K)*/T. (133 system and, hence, in the presence of the magnetic field, the
entropy of mixing at fixedB is larger than in its absence.
Evaluation of(du/dT), by differentiation of Eq.(133), and However, ifH, instead ofB, is held fixed, then the magnetic
then combining Eqs(2) and(71) for the mixture, yields entropy of mixing vanishes.

n

n

D. Transformation of the results to electroquasistatic fields

n
Sn=Sm— tR>, N;(uomH/KT)? 1
Sn=Sn~ ¢ Z’l (omiH/KT)%, (134 The results obtained hitherto for continuum and discrete

systems in magnetoquasistatic fields can be transformed to
where the subscriph denotes a property of the mixture, and electroquasistatic fields by replacing the ggetH, andB by

H is the modulus of the field iV. e, E, andD, respectively. Heres is electric permittivity E is
The entropy of mixing, at fixe®, is obtained by subtract- the electric field strength, arldl is the electric displacement.
ing Eq. (131) from Eq.(134). The result is The electric polarizatiorPg should replaceuoM. Further-
. N N n:ore,bvariablles éhr;t are funct'ions olf the magn(_etic sFet must
- A N ) also be replaced by appropriate electric notation. For ex-
Sm_izl S_Sm_izl S"LER; Ni(somiH/KT) ampleUy,, Uy, &/, x, andm can be replaced by,,
e1» € Xe, @andm,, where the subscrigt denotes that the
X (HH?=1). (139 variable expresses an electric quantity.

At uniform and fixedB, H 2/H?=u?/n?,i=1,2,...n. It fol-
lows that if ="_,u?/ u?>1, then the magnetic part of the
entropy of mixing is positive; otherwise it either vanishes or (1) The thermodynamic properties of a continuum in the
it is negative. In what follows we investigate the change inpresence of electromagnetic fields, at either fiBeat H, can
permeabilities due to the mixing effect. Since each gas bebe described by two conjugate sets of variables. These two

SUMMARY AND CONCLUSIONS
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sets consist of the variabl&V, andN andT, P, and{. The (9) Ideal gases that are contained in discrete systems and
first set, i.e.,.S,V,N, prevails in the absence of fields and in are placed under the action of electromagnetic fields, can be
this respect, it is “field independent.” The variables of the characterized thermodynamically by the s&t¥, andN and
second set are functions of the first set as well as of the fieldl;, Pp, and{p. The setTy, Pp, and{p depends on the
and in this respect they are “field dependent.” In the ab-geometry of the system and the constraints_imposed_on it.

sence of fields, the s@t,P,{ reduces tdr,P,¢. This set is expected to be different from the $ef, and{
(2) The field-dependent enerdy cannot be obtained by that characterizes a continuum.
Euler integration oflU holding T, P, and{ fixed. However, (10) The equation of state of an ideal gas that is contained

if dU is separated into field-independent and field-dependenh a discrete system has been formulated. This equation of
exact differentials, then it can be Euler integrated holding state depends on the geometry and constraints of the system
P, and{ fixed. o and its surroundings and in this sense it is not unique.

(3) In the presence of electromagnetic fields, theTseR, (11) The Gibbs theorem, with respect to ideal gases, holds
and ¢ has the same thermodynamic role which is characterin the presence as well as in the absence of fixed intensity
istic of the setT, P, and ¢ prevailing when the fields are electromagnetic fields.

absent. It follows that, at equilibriund;, P, and{ must be (12) The expansion of permeable ideal gases, within a
uniform in continua that are under the action of fields. Thisconfined space of volumé, increases the permeability Wt
can result in the occurrence of discontinuous jumps,ife, (13) The entropy of mixing of permeable ideal gases, in

and ¢ across interfaces that separate materials of differerthe presence of a uniform and fixed®l magnetic field, is
electromagnetic properties. Systems that have different magdarger than the entropy of mixing of these gases in the ab-
netic properties and share a common interface are driven bgence of the field. In this sense the effect of a filefield is
the field to change their equilibrium values ©f P, and{  to increase the entropy of mixing of permeable ideal gases.
which prevail in its absence. However, ifH instead ofB is held fixed in the mixing pro-

(4) If (dulds)y <O and (du/dp)sn>0, as is the case cess, then no increase of entropy of mixing due to the field is
with ideal gases and the majority of liquids and solids, thenexpected to occur.
at fixedB, T>T, P<P, and{<(¢. If H, instead ofB, is held

fixed, then for ideal gase3,<T, P=P and{>{. For gases APPENDIX A: VERIFICATION OF EQ. (12)
that follow the Langevin equation in a fixegl field P4>P, ) » )
whereas ifH is fixed Py=P. We expressin addition toU),) the hypothetical effect of

(5) Equations of state of an ideal gas in the presence oihe field, on each of the ordinary thermodynamic variables,
fields have been derived. In the absence of fields, these equiy adding a hypothetical field-dependent increment in the
tions reduce to the ordinary equation of state of an ideal gadorm AZ, whereZ is T, S, P, V, £, andN. In the absence of

(6) Two different magnetic susceptibilities can be definedthe fieldAZ=0, and Eq.(11) prevails, whereas in the pres-
for ideal gases that follow the Langevin equation. One susence of the field wheraZ#0 we have
ceptibility yx, is defined at fixed density, or fixed specific

volumev, and the otheryp, is defined at fixed pressufe. U=(T+AT)(S+AS)—(P+AP)(V+AV)

The first susceptibility, i.e.y, , is proportional to If, and +(Z+AD(N+AN)+U,,

consequently it follows the Curie-Weiss law. The second

susceptibility, i.e.,xp, follows a different law since it is =TS—PV+{N+Upy(AZ)+ Uy, (A1)

proportional to IT% These susceptibilities are the conse-
quence of imposing the above constraints on the gas, i.e., fhere
the same way that they give rise to the well-known heat
capacities at fixed volume, and fixed pressurep. Um(AZ)=AT(S+AS)+TAS-AP(V+AV)—PAV

(7) The fundamental equation of an ideal gas in the pres- +AZ(N+AN)+ ZAN. (A2)
ence of fields can be presented in the following alternative
formulations: energy formulatiot) =U(S,V,N,S) and en-  However the total magnetic energy that is stored in the field
tropic formulationS=S(S,V,N,U). These formulations are is known to be exactly equal td,,, so that
also a consequence of the fact thatand S are both func-
tions of S, V, N, andB. UutUn(AZ)=Uy (A3)

(8) Specific heats of ideal gases, with positive susceptibil-
ity in the presence of fields, have been formulated. At fixednust be satisfied, and hence
B, the field increases, (which prevails in its absengédy
(1/6) R(omH/KT)?2, whereas at fixetH, c, is decreased by Un(AZ)=0. (A4)
the same amount. If the gases have negative susceptibilitiejh. h hat is gi
then the reverse of the above applies. The following relation is shows that is given by
between field-dependent heat capacities have also been es-

tablished: U=TS-PV+{N+Uy. (A5)

& =0 =L, a—0 =LR(uwomH/KT)2, Equation(AS)_ agrees With_Eq(12) to the extent that even if
08~ Con=2(Cra=Crn) = 5Rko ) we hypothesize that the field changes the conventional ther-
e = 2=RI1+:(u-mH/KD21=0. . —0C modynamic variables, apart from the effectldf, , then the
pe Cos=RLIF (1o V1= Con=Con overall effect cancels out. This justifies using these variables
+ iR(uemH/KT)?. as being independent of the field.
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Furthermore, the result expressed by &) and the fact &=(0UloX))yx, j#i, i,j=0,..n (A11)
[see Egs(12)—(14)] that ! )
- is the partial derivative of the enerdgy=U(B=0), that pre-
dU=dU+dUy=TdS-PdV+{dN+dUy (A6) vails in the absence of the fielé.g., atB=0), with respect

to X;, and
show thatS, V, andN, and hence alstJ, T, P, and must

indeed be independent bfy, . The very existence of the field Emi=(Um1dX)x. g, J#i, 1,j=0,...n (Al2)
does not change variables that prevail in its absence. If it :

were not so, thetJ,, cannot be arbitrarily changed holding is the partial derivative of the magnetic energly, with
the setS, V, and N fixed, and vice versa. Recalling that respect tox;, at fixedB.

Uu=Uun(SV,N,B), it follows that, at fixedS, V, andN, Supposet; were not separable, in the form specified by
Uy =Uu(B) can be changed independently and by magneti&d. (A10). Then removal of the field would not yield
means only, i.e., as a sole function®ifIt must be clear that & (B=0)=§, and turning the field on, at fixegl, would not
Uw=Uy(B) implies its exclusive dependence on the sourcéncreaset; from its value atB=0 by &y, , as required.

of the field B and not on the contents and volume of the Combining Eqs(A9)—(A12), followed by rearrangement

system wherdJ, is evaluated. of terms, gives

We turn now to examine an alternative analysis, that uses n n
the energy differential, as a starting point, to derive @@). N X v X X
Suppose Eq(15) is not known and we seek a general ex- du i:zo (0U/d ,)de ! izzo (dUmla ')Xj 8dX

pression for the field-dependent energy differential. We start
by writing the energy differentiad U in a form that makes a +VH-dB. (A13)
clear distinction between the part due to system variablesThe first sum on the ri ; ; ;
ght-hand side of H4\13) is readily
‘E)md tT)e pz_irtéjueft%th? ?;feCt of the current soufdesioted identified as the energy differentidlU that prevails in the
y subscriptC) of the field, absence of the field. The second sum combined with the third
term, on the right-hand side of E¢A13), gives the total

n
dU=> &dX +dUyc. (A7) differential of the magnetic energyU, . Hence
=0

. dU=dU+dU,, . (A14)

By definition, the variableg; are functions of the extensive ) _ ) )
variablesX,...,X,, and the field, andiU,, is the change in Upon integration of Eq(A14), Eq. (12) is obtained. Com-
the magnetic energy due to the exclusive action of the curPining Egs.(A10), (All), and(A12) gives
rent sources of the field. Since the current sources are, tz_ ~ _
definition, independent of the system variables all terms o 1= (JUI9Xi)x; 8= (0U19Xi)x+ (Ul Xi)x; g
Eq. (A7) are independent, as required. C

Thus &;dX; represents the change in energy due to a j#i, 1,j=0,..n. (A15)
change inX;, at the conditions set by the current sources ofgqyation(A15) is equivalent to Eqs(16)—(18).
the field. These conditions, and the constraints set on the

field, determine the Wafi depends on the field. Similarly, APPENDIX B: DERIVATIVES OF :|:, |5’ AND ZWITH

dU,,c expresses the net effect of the current sources on the RESPECT TO THE FIELD
system, which is characterized by a given set of extensive
variables, i.e., at fixe&;, i=0,1,...n. Differentiation of Eq.(19) at fixedp andT gives
It follows that this differential must express the magnetic ~
work done by the current sources on the system, e.g., at fixed (ﬂ) _ E H(a_'“) ] (B1)
X, 1=0,...)n, and hence it is given by Ml r 98]y
dUpyc=VH-dB, (A8) Differentiation of Eq.(20) at fixedp, T, andP gives
where dB is set (at fixed X;, i=0,...,n) by the current P u
sources only. 9H =—pH ap —HH. (B2)
Combining Eqs(A7) and (A8) gives pT.P SN
N Differentiation of Eq.(21) at fixedp andT gives
Lo .. JH p.T ap S,V.
j#i, 1,j=0,..n. (A9)

A Equations(B1)—(B3) can be derived as Maxwell relations
Since the variables; are state variables, they must be sepausing the Legendre transformati¢gee Eq(15)]
rable into field-independent and field-dependent parts d(fJ —VHB)='AI'dS— I5dv+2dN—VB dH—HB dV

G=&it Emis (A10) —TdS—(P+HB)dV+{dN—VB dH.
where (B4)
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From Eq.(B4) we have
(a%

) ~|avB)
oH S,V,N

aS

VN, H p

(B5)

Sinceu has been assumed to be independerd oit can be
dropped from the subscripd,N,H of the rightmost deriva-
tive of Eq.(B5). Holding S, V, andN fixed means that and
T are also fixed. This shows that E®5) verifies Eq.(B1),

J(P+HB)
H

a(VB)
N

I
=,uH—pH<—) .
L,N,H 9P/ snm
(B6)

UsingHB= xH?, and the assumption thatis fixed whenS,
V, andN are fixed, gives

(aﬁ) y
- =—p
(9H S,V,N

If S, V, andN are fixed, therp, T, andP are also fixed, so
that Eq.(B7) verifies Eq.(B2):

S\V,N

Ip

o (B7)

—uH.
S,N

FY. a(VB P
) Sl
d S,V,N J S,V,H J S,V,H
P
- a—“ . (B8)
Pl sv.h

Hence Eq.(B8) verifies Eq.(B3).

Equation(B1) shows that if gu/ds)y y<O, as is the case
with gases and many other materials, then, at fixechd T,
T is an increasing function dfl. Equations(B2) and (B3)
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show that if (du/dp)sn>0, as is the case with permeable
gases and other liquids and solids then, at fiBe®, V, and
N, P and ¢ are decreasing functions éf.

APPENDIX C

Equation(4) shows thafl can be presented as a function
of p ands as follows:

T=T(SV,N)=T(s,0)=T(p,s), v=1p. (Cl
Combining Eqs(3) and(C1) gives
m=pu(p,s). (C2
Differentiation of Eqs(3) and(C2) gives
du=(duldp)rdp+ (duldT),dT, (C3
du=(duldp)sdp+ (dulds),ds. (CH

Subtraction of Eq(C4) from (C3) gives

0=[ (3l dp)r— (duldp)s)dp+ (uldT) AT~ (9l 3s) ds.
(CH

By virtue of Eqgs.(C3) and(C4), p must be independent df
ands, and vice versa. This constraint s@tsas a sole func-
tion of s. It follows that the coefficient oflp in Eq. (C4)
must vanish, and hence

(dpldp)r=(duldp)s=(Ipldp)sn

where here use was made of the equivalence between fixing
s=S/N and fixing the pairS and N. Furthermore using, at
fixed p (or also the constraint thak is independent op),
T=T(s) gives dT=(dT/ds),ds and (@u/dT),dT
=(dul 9T) (9T 3s) ,ds=(dulds) ,ds, the result being that
the second and third terms in E@5) cancel out.

(C6)
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