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The thermodynamics of ideal gases in the presence of quasistatic electromagnetic fields is considered. It is
shown that thermodynamic properties of continua, in the presence of these fields, can be characterized by two
conjugate sets of variables consisting of three extensive field-independent, and three intensive field-dependent
variables. These sets are entropy, volume, and mass, i.e.,$S,V,N%, and field-dependent temperature, pressure,
and chemical potential, i.e.,$T̂,P̂,ẑ%, respectively. The second set has the same thermodynamic role as
$T,P,z% that prevails in the absence of fields. In this context,T̂, P̂, andẑ must be uniform at equilibrium and,
consequently,T, P, andz can have discontinuous jumps across interfaces that separate materials of different
electromagnetic properties. Ideal gases that follow the Langevin equation are affected by a fixedB field, so that
T̂ increases, whereas bothP̂ and ẑ decrease as compared to their values in the absence of the field. The
equation of state of ideal gases in fields has been formulated in terms ofT̂ and P̂. Using this equation, it is
shown that the change in the pressureP, which is induced by the field, is positive at fixedB, whereas it is
negative, but smaller, ifH is fixed. Magnetic susceptibilities are defined at either fixed density, or at fixed
pressure as two distinct and different thermodynamic variables. The susceptibility at fixed density follows the
Curie-Wiess law. In contrast, the one defined at fixed pressure, being inversely proportional to the temperature
squared, follows a different law. The fundamental equation of ideal gases in the presence of magnetic fields is
derived. The field-dependent energyÛ is shown to be a function ofS, V, andN and of the field-dependent
entropy Ŝ, and vice versa. BothÛ and Ŝ are functions ofS, V, and N and the magnetic inductionB.
Field-dependent specific heats of ideal gases, and relations between them, have been formulated under different
constraints. At fixedB, the field-induced increase in the specific heat is proportional to the ratio of magnetic to
thermal energy squared. Ideal gases that are contained in discrete systems, under the action of magnetic fields,
follow an equation of state that can be different than the one which is applicable for cases involving continua.
This equation of state is not unique in the sense that it consists of field-dependent variables which are functions
of the geometry of the discrete system, and their forms vary according to the constraints imposed on the
discrete system and its surroundings. In the presence of fixed intensity magnetic fields, mixtures of permeable
ideal gases are shown to satisfy the Gibbs theorem, and, at fixedB, their entropy of mixing is larger than the
value prevailing when the field is absent. Finally, the formulas and results obtained for ideal gases in magnetic
fields can be applied to ideal gases in electric fields, through appropriate replacement of magnetic variables by
their electric counterparts.@S1063-651X~96!08110-X#

PACS number~s!: 51.30.1i

INTRODUCTION

Recently the theory of thermodynamics in the presence of
electromagnetic fields has been formulated@1#. It was shown
that in a lossless ideal system the electromagnetic energy
must be a state function that has an exact differential. Fur-
thermore, it is this differential that must be added to the
energy differential prevailing in the absence of the field. In
this way the sum remains an exact differential of a state
function that stands for the overall internal energy. The
theory provides different formulations for the field-
dependent pressure and chemical potential under different
field constraints. The case of discrete systems, where part or
all of the field energy can be stored outside the physical
boundaries of a thermodynamic system~which is the source
of this field!, has been defined with respect to the relation
between energy and its source. The field energy stored out-
side the boundaries of a system, which is identified as its sole
source, is accounted for as pertaining to this source. This is a
consequence of the need to integrate the energy of a field
source over the whole space that is energized due to its pres-
ence. The theory of thermodynamics in the presence of fields

@1# was followed by system analysis of field-dependent ther-
modynamic variables and Maxwell relations@2#. The analy-
sis of well defined systems provided a direct test and a better
insight as to the validity and meaning of the field-dependent
pressure and chemical potential. The existence of a field-
dependent temperature as the third field-dependent variable
was not considered as yet, due to the need to find its physical
justification and meaning. In this work an attempt is made to
derive a complete set of field-dependent thermodynamic
variables~e.g., inclusive of the field-dependent temperature!
and then use it to obtain the fundamental equation and equa-
tions of state of ideal gases, in a quasistatic electromagnetic
field.

THEORY

The theory is first developed for the case of gases that
form a continuum in the field, and then for the case of gases
contained in a discrete system. The ideal gases are assumed
to be electromagnetically linear, and the electromagnetic
fields are quasistatic. We develop the theory in detail for
gases in magnetoquasistatic fields and then show how to
transform the results and formulate the electric counterpart.
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A. Uniform and isotropic continuum

Formulation of variables

In what follows the ideal gas is contained in a system that
forms a uniform and isotropic continuum with respect to the
field. Such a system can, for example, be a thin hollow toroid
that is filled with the gas. The magnetic energy of the system
is given by

UM5 1
2VB

2/m5 1
2VmH2, ~1!

B5mH, ~2!

whereH, m, andB are the magnetic field intensity, perme-
ability, and magnetic induction, respectively. Note that, here
and henceforth, vectors are denoted by boldface fonts,
whereas their moduli by regular fonts. The magnetic energy
UM is fully contained in the volumeV whereH andm are
uniform andm is independent ofH. The permeabilitym is a
function of the densityr and temperatureT of the gas,

m5m~r,T!. ~3!

The temperature is a function of the entropyS, the volume
V, and the mole numberN,

T5T~S,V,N!. ~4!

The density is given by

r5N/V. ~5!

By virtue of Eqs.~3!, ~4!, and~5!, we have

m5m~S,V,N!, ~6!

and hence

dm5~]m/]S!V,NdS1~]m/]V!S,NdV1~]m/]N!S,VdN.
~7!

The differential ofUM can be presented in the following two
forms. The first form is obtained from Eq.~1! by selectingV,
B, andm as the independent variables,

dUM~V,B,m!5
1

2

B2

m
dV1V

B

m
dB2

1

2
V
B2

m2 dm. ~8!

Combining Eqs.~2! and ~8! gives

dUM~V,B,m!5 1
2H•B dV1VH•dB2 1

2VH
2dm. ~9!

The second form is obtained from Eq.~1! by selectingV, H,
andm as the independent variables. The result is

dUM~V,H,m!5 1
2H•B dV1VB•dH1 1

2VH
2dm. ~10!

For example, at fixedV and B, Eqs. ~9! and ~10!, using
dH5d~B/m!, yield 2 1

2VH
2dm, whereas at fixedV andH,

usingdB5d~mH!, the result is12VH
2dm. Thus at fixedV and

B, a positive change inm decreases the magnetic energy,
whereas the reverse is true ifH, instead ofB, is held fixed. In
the absence of the field, the internal energy is given by

U5TS2PV1zN. ~11!

In the presence of the magnetic field~see Appendix A for
further details!,

Û5U1UM5TS2PV1zN1UM , ~12!

whereÛ is the field-dependent overall energy, andT, P, and
z are the temperature, pressure, and chemical potential in the
absence of the field.

The differentials ofU and ofUM are both exact, but they
are different in the sense thatdU is given by

dU5T dS2P dV1z dN. ~13!

Since the Gibbs-Duhem equation holds,

2S dT1V dP2N dz50, ~14!

whereasdUM is given either by Eq.~9! or by ~10!. Differ-
entiation of Eq.~12! in conjunction with Eqs.~7!, ~9!, and
~13! yields

dÛ5T̂ dS2 P̂ dV1 ẑ dN1VH•dB, ~15!

where T̂, P̂, and ẑ are field-dependent intensive variables
which are defined, at fixedB, as follows:

T̂5~]Û/]S!V,N,B5T2 1
2VH

2~]m/]S!V,N , ~16!

P̂52~]Û/]V!S,N,B5P1 1
2VH

2~]m/]V!S,N2 1
2mH2,

~17!

ẑ5~]Û/]N!S,V,B5z2 1
2VH

2~]m/]N!S,V . ~18!

Expressing these variables in terms of specific entropys and
densityr gives

T̂5T2
1

2r
H2~]m/]s!V,N , ~19!

P̂5P2 1
2 H

2r~]m/]r!S,N2 1
2mH2, ~20!

ẑ5z2 1
2H

2~]m/]r!S,V , ~21!

where

s5S/N. ~22!

The use of the energy differential@in the form given by Eq.
~15!# for derivation of Eq.~12! is described in Appendix A.

Note that if the condition of fixedB implies that the flux
linkage with the current source is also fixed, then no field-
related exchange of energy between the current source and
the system is allowed. This means that, at fixed magnetic
flux, the system is limited to exchange of energy with its
surroundings but not with its current source. Equations~19!–
~21! show that for materials that are characterized by
(]m/]s)V,N,0, ~]m/]r!S,N.0, ~]m/]r!S,V.0, and are held at
fixedB, T̂.T, P̂,P, andẑ,z. If H instead ofB is set fixed,
then energy exchanges between the system and current
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source occurs, the consequence being that the signs of the
terms that involve a derivative ofm are reversed. Thus, at
fixed H,

T̂5T1
1

2r
H2~]m/]s!V,N , ~23!

P̂5P1 1
2H

2r~]m/]r!S,N2 1
2mH2, ~24!

ẑ5z1 1
2H

2~]m/]r!S,V . ~25!

Note that in deriving Eq.~20! from Eq. ~17!, use was made
of

~]m/]V!S,N5~]m/]r!S,N~]r/]V!S,N

52~r/V!~]m/]r!S,N . ~26!

Equation~15!, in conjunction withT̂ @see Eqs.~16!, ~19!, and
~23! for its alternative forms# shows that in the presence of
the field, the heat differential which is delivered to the sys-
tem is T̂dS and notTdS. Recall thatTdS is the heat differ-
ential in the absence of fields. It follows that the excess in the
heat differential due to the field is (T̂2T)dS.

An attempt to identify T̂dŜ @where Ŝ is the field-
dependent entropy@1# which is given below by Eq.~71!# as
the heat differential instead ofT̂dSwill show that, at fixedS,
V, N, andB, it vanishes. It follows thatŜ cannot replaceS as
the fundamental and independent entropic variable, andT̂dS
is indeed the heat differential in the presence of the field;
also see the discussion of the more general perspective of Eq.
~15! below.

Furthermore, it is important to realize that the setT̂, P̂,
and ẑ is defined by Eqs.~19!–~21! and by Eqs.~23!–~25!,
exclusively for the constraints of fixedB andH, respectively.
This limits their use only for those processes that conform
with one of the above constraints. For example, if a process
simultaneously involves variableB andH, then Eqs.~19!–
~21! and ~23!–~25! cannot be applied directly. However,
since the energy is a state function it can be analyzed by first
holdingB fixed and lettingH vary, and then holdingH fixed
and lettingB vary, so that the final values ofH andB are
reached.

In a more general perspective, Eq.~15! gives the differ-
ential of the field-dependent internal energy in terms of four
distinct and independent differentials. Each of these differ-
entials has a clear physical meaning as follows. The first
differential T̂dS stands for the energy change at fixedV, N
andB ~i.e., fixed flux!. As no volume, mass, and magnetic
flux changes are allowed, this energy change must involve
heat exclusively. It follows thatT̂dS is indeed the heat dif-
ferential in the presence of the field. The second differential
2P̂dV stands for the energy change at fixedS, N, andB. As
no entropy, mass, and magnetic flux changes are allowed,
this energy change must involve pressure-volume, or, alter-
natively, mechanical work exclusively. It follows that2P̂dV
is indeed the pressure-volume or mechanical work differen-
tial in the presence of the field. The third differentialẑdN
stands for the energy change at fixedS, V, andB. As no
entropy, volume, and magnetic flux changes are allowed, this
energy change must involve mass transfer exclusively. It fol-
lows that ẑdN is indeed the mass transfer energy~or work!

differential in the presence of the field. The fourth differen-
tial stands for the energy change at fixedS, V, andN. As no
entropy, volume, and mass changes are allowed, this energy
change must involve change of flux, or alternatively, a
change of magnetization due to the exclusive interaction be-
tween the current sources and the system being polarized. It
follows thatVH•dB is indeed the magnetization work differ-
ential of the current sources.

Although Eq.~15! can be integrated at variablesT̂, P̂, and
ẑ to retrieve Eq.~12!, it cannot be Euler integrated, i.e.,
holding T̂, P̂, and ẑ fixed, for the same purpose. It follows
that, in general, except for the caseH50,

ÛÞT̂S2 P̂V1 ẑN1 1
2VmH2. ~27!

The integration of Eq.~15! can readily be carried out by
separating, and then grouping according to type, the field-
independent and field-dependent terms, so that each group
becomes an exact differential. The field-independent group
can be Euler integrated~i.e., holdingT, P, andz fixed!, but
the field-dependent differential must be integrated as one ex-
act differential. This integration retrieves Eq.~12!.

The analysis presented hitherto includes the contribution
of free space to the magnetic energy. SinceT̂ and ẑ are
functions of partial derivatives ofm, they give the net effect
of the gas~i.e., independent of the energy stored in free
space!. However, P̂ depends on the term2 1

2mH
2, which

includes the effect of free space. It follows that the net effect
of the gas, i.e., with respect to the field-dependent pressure,
is obtained once the term21

2mH
2 is replaced either by

21
2B

2@~1/m!2~1/m0!#, or by 2 1
2~m2m0!H

2, for the cases
where eitherB or H are held fixed, respectively.

Using the variablem8, which is defined by

m85m2m0 , ~28!

the net effect of the gas is obtained if, in the term21
2mH

2, m
is replaced either by2mm8/m0 or by m8 for the cases in
which eitherB orH is held fixed, respectively. The variables
P̂ and ẑ have been defined elsewhere already@1#. However,
T̂ has not yet been defined explicitly, and its physical impli-
cations need further considerations.

If ( ]m/]s)V,N,0, as is the case with ideal gases, then at
fixedB, T̂.T, whereas at fixedH, T̂,T. In the former case,
a decrease inm due to an increase ins increasesH and hence
also the entropic part of the magnetic energy. This gives an
overall effect of an increased field-dependent temperature. In
the latter case, i.e., fixedH, the reverse is true. At fixedB,
which here implies fixed flux,T̂ represents the exclusive ef-
fect of the field on matter which is under its action. In con-
trast, at fixedH, T̂ also involves the effect of the current
source. In this respect, the pure effect of the field is to in-
crease the temperature of matter for which (]m/]s)V,N,0
holds. Nevertheless, according to the formal definition of
temperature, the two different field constraints yield two dif-
ferent field-dependent temperatures. These temperatures re-
flect the different rates of change of the field-dependent en-
ergy with the field-independent entropy. These different rates
arise when different field constraints are imposed on the sys-
tem and its current source. For further details, on derivations
and properties of derivatives ofT̂, P̂, and ẑ with respect to
H; see Appendix B. Formally,T̂, P̂, and ẑ are a set that

4926 54Y. ZIMMELS



characterizes the thermodynamic system in the same way
that the setT, P, andz characterizes this system in the ab-
sence of fields. Thus, using this formalism,T̂, P̂, and ẑ can
be considered as the field-dependent temperature, pressure,
and chemical potential of the continuum. Using these inten-
sive variables as ordinary thermodynamic variables suggests
that, at equilibrium,T̂, P̂, and ẑ be uniform across the sys-
tem. This has been stated already forP̂ and ẑ elsewhere@1#,
the consequence being that there can be a jump inP and z
across interfaces separating materials of different magnetic
properties. The uniformity ofT̂ suggests that, in the presence
of electromagnetic fields,T may also have a jump across
such interfaces. The existence of such jumps, i.e., in each
variable of the setT, P, and z due to T̂, P̂, and ẑ being
uniform at equilibrium across interfaces, means that, at the
instant the field is removed,T, P, andz must be nonuniform
across these interfaces. This gives rise to driving forces that
act to change the position of the interfaces, and cause a flow
of heat and matter across them. This important observation
can be formulated as the following corollary.

Systems that have different electromagnetic properties,
and share a common interface, are driven to change their
equilibrium position and exchange heat and matter across
this interface, when the field acting on them is removed. In
this sense, removal of the field drives systems, which have
different electromagnetic properties and share a common in-
terface, to change the way their field-independent energies
are partitioned. The actual realization and outcome of this
drive depends on constraints that are imposed on both sys-
tems and their common interface. In the same context, if~in
the absence of fields! a system is at equilibrium andT, P,
and z are uniform, then at the instant a field is imposed on
this system,T̂, P̂, and ẑ are nonuniform. It follows that a
change inT, P, and z must occur if the system is to shift
back to equilibrium. When this equilibrium is reached,T̂, P̂,
and ẑ become uniform, whileT, P, andz turn nonuniform.
Having defined the set of field-dependent thermodynamic
variables, we next formulate the equations of state and the
entropic fundamental equation of gas in the presence of the
field.

Formulation of equations of state

The first equation of state involves the energy of the gas.
The magnetic energy as given by Eq.~1! includes the con-
tribution of free space. Thus, in order to obtain the net en-
ergy due to the gas, it is necessary to subtract the energy
stored in free space. The value of this net energy of matter
depends on the constraints which are imposed on it, e.g.,
whetherB orH is held fixed. Thus the net energyÛg , due to
the gas is

Ûg5U1 1
2VB

2S 1m2
1

m0
D5U2 1

2Vm8H2~m/m0!

~29a!

at fixedB, or

ûg5u2
1

2r
m8H2~m/m0!, ~29b!

Ûg5U1 1
2 Vm8H2, ~30a!

at fixedH, or

ûg5u1
1

2r
m8H2, ~30b!

whereu5U/N and ûg5Ûg/N.
Thus Eq.~29! is the ‘‘energy equation of state’’ in a fixed

B field, whereas Eq.~30! is its counterpart in a fixedH field.
Equation ~29! shows also that in a fixedB field, Ûg is a
decreasing function ofm8. The reverse is true in a fixedH
field @see Eq.~30!#.

The pressure of the gas is readily obtained as

P̂g52~]Ûg /]V!S,N,B

5P2 1
2H

2r~]m/]r!S,N1 1
2m8H2~m/m0!, B fixed,

~31!

P̂g52~]Ûg /]V!S,N,H

5P1 1
2H

2r~]m/]r!S,N2 1
2 m8H2, H fixed. ~32!

Equation ~31! shows that if m8m/m0.r~]m/]r!S,N , then
P̂g2P.0, and the effect of the field is to increase the pres-
sure of the gas. As shown below this indeed is the case for
permeable gases. Recalling that in the absence of the field
P5rRT, the second equation of state can be obtained by
elimination of T between Eqs.~19! and ~31! in a fixed B
field, and between Eqs.~23! and~32! in a fixedH field. The
result is

P̂g5rRT̂1 1
2H

2@R~]m/]s!V,N1m8m/m02r~]m/]r!S,N#
~33!

at fixedB, and

P̂g5rRT̂2 1
2H

2@R~]m/]s!V,N1m82r~]m/]r!S,N#
~34!

at fixed H. At either H50 or m5m0, Eqs. ~33! and ~34!
reduce toP5rRT, as expected.

For monatomic ideal gases@3#,

~]s/]T!V,N5
3

2

R

T
. ~35!

Hence using

~]m/]s!V,N5~]m/]T!V,N /~]s/]T!V,N ~36!

gives

~]m/]s!V,N5~2T/3R!~]m/]T!V,N . ~37!

The permeability is a linear function of the susceptibilityx,

m5m0~11x!, ~38!

wherex is defined as the ratio of magnetizationM and field
H,

x5M /H, ~39!

M5B/m02H. ~40!
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The magnetization of an ideal gas is assumed here to follow
the Langevin equation@4#

M5Ms~cotha21/a!, ~41!

Ms5Nm5rÑm, ~42!

whereMs is the saturation magnetization,N is the number
density~i.e., per unit volume! of the gas molecules,m is the
dipole moment of a single molecule,Ñ is Avogadro’s num-
ber, anda is defined by

a5m0mH/kT, ~43!

wherek is the Boltzmann constant.
At room temperature, the value ofa for ideal gases is

expected to be small. This facilitates the use of the following
approximation which holds fora!1:

M5 1
3Msa5 1

3Ms

m0mH

kT
, a!1 . ~44!

By virtue of Eq.~39!, the susceptibility of the gas is obtained
from Eq. ~44! as

x5C/T, ~45!

whereC is a function ofr via its dependence onMs ,

C5C~r!5 1
3Msm0m/k5 1

3rÑm0m
2/k. ~46!

Note that by introducing the rightmost side of Eq.~46!, it is
implied thatm.0. If m,0, as is the case for diamagnetic
gases, thenC~r! would be negative. For the sake of simplic-
ity, we assume henceforth thatm.0. The Curie-Weiss law
can be expressed as@3#

x5C8/~T2u!, ~47!

whereC8 andu are constants.
It is seen that the gas follows the Curie-Weiss law ifr is

fixed and if, in Eq.~47!, u50. In this caseC85C. Since
r51/v, settingr fixed is equivalent to imposing a fixed spe-
cific volume v. Thus, under the condition of fixedr, and
hence also of fixedv, the susceptibility is defined as one
pertaining to matter that is held at fixedv. However, if P
instead ofr is held fixed, and the use ofr5P/RT as an
approximation is justified~as indeed is the case since the
field effect in gases is expected to be small! thenC becomes
an inverse function ofT,

C~T!5 1
3Pm0~m/k!2/T, P5const. ~48!

In this case the susceptibility, e.g., at fixed pressure, is an
inverse function ofT2,

x5C9/T2, P5const, ~49!

C95 1
3Pm0~m/k!2. ~50!

Thus Eqs.~45! and~49! define the susceptibilityx at fixedv,
i.e., x5xv , and at fixedP, i.e., x5xp , respectively. This
seems to offer the magnetic counterpart of the specific heat at
fixed v and at fixedP, i.e.,cv andcp , respectively. In sum-

mary, the susceptibility of ideal gases that satisfy the Lange-
vin equation follows two different laws depending onr or P
being fixed. The Curie-Weiss law is followed only at fixedr,
but not at fixedP, where the susceptibility varies with 1/T2.
In what follows we use Eq.~3!, and hence the derivatives of
m are evaluated either at fixedr or at fixedT,

dm5~]m/]r!Tdr1~]m/]T!rdT. ~51!

Thus Eq.~45! must be used for evaluation of~]m/]T!r , as is
done below. Furthermore, henceforth,]m/]r and]m/]T stand
for ~]m/]r!T and ~]m/]T!r ,

]m/]T5m0]x/]T52m0C/T
252m0x/T52m8/T.

~52!

Again, by virtue of Eqs.~38!, ~39!, ~42!, and ~44!, and at
fixed T, m is a linear function ofr,

m5Kr1m0 , K5 1
3 Ñ

~m0m!2

kT
, ~53!

where at fixedT, K is a constant. Hence

]m/]r5K5m8/r . ~54!

Combining Eqs.~31! and ~54! gives

P̂g5P1 1
2m8H2~m/m021!, B fixed. ~55!

Combining Eqs.~32! and ~54! gives

P̂g5P, ~56!

whereP5rRT holds. Note that the derivation of Eqs.~55!
and~56! @as well as Eqs.~59! and~60! below# implies equal-
ity between~]m/]r!T and ~]m/]r!S,N ; see Appendix C for
proof and details. Equation~55! shows that ifB is set fixed,
then for gases that are permeableP̂g.rRT, and hence the
field acts so as to increase the pressure; i.e., above its value
P at H50. In contrast, Eq.~56! shows that, at fixedH,
P̂g5rRT, irrespective of the gas permeability and the field.
Note that Eq.~55! is an equation of state having the form
P̂g5 P̂g~r,T,H!. Here the field-dependent pressure is a func-
tion of the field-independent temperatureT and the fieldH.

This constitutes dependence ofP̂g on mixed variables, i.e.,
on one which is independent of the field and the other which
is the field strength.

Combining Eqs.~19!, ~37!, and~52! gives

T̂5T1
1

3rR
m8H2, B fixed. ~57!

Combining Eqs.~23!, ~37!, and~52! gives

T̂5T2
1

3rR
m8H2, H fixed. ~58!

Equations~57! and ~58! show that if a monatomic gas is

permeable, then, at fixedB, T̂.T, whereas at fixedH, T̂,T.
For ideal gases that follow the Langevin equation, substitu-
tion of Eq.~54! into Eq.~33! for the case of fixedB, and into
Eq. ~34! for the case of fixedH give
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P̂g5rRT̂1 1
2H

2@R~]m/]s!V,N1m8~m/m021!#, B fixed,
~59!

P̂g5rRT̂2 1
2H

2R~]m/]s!V,N , H fixed. ~60!

If these gases are also monatomic, then Eq.~37! holds, and
upon its substitution@in conjunction with Eq.~52!# into Eqs.
~59! and ~60! we obtain

P̂g5rRT̂1 1
2m8H2@m/m025/3#, B fixed, ~61!

P̂g5rRT̂1 1
3m8H2, H fixed. ~62!

Note that, as shown in Eq.~52!, m8 is an inverse function of
T,

m85m0C/T. ~63!

Thus, eliminatingT between Eqs.~57! ~at fixedB! or ~58! ~at
fixed H! and ~63!, gives the following quadric equations in
m8:

1

3rR
H2~m8!22T̂m81m0C50, B fixed, ~64!

1

3rR
H2~m8!21T̂m82m0C50, H fixed. ~65!

Solution ofm8 as a function ofr, T̂, andH gives

m85m8~r,T̂,H !. ~66!

Sincem5m81m0, we also have

m5m~r,T̂,H !. ~67!

Hence Eqs.~61! and~62!, in conjunction with Eqs.~66! and
~67!, present an equation of state whereP̂g is a function of,
r, T̂, andH,

P̂g5 P̂g~r,T̂,H !. ~68!

Thus, in contrast to Eq.~55!, hereP̂g is a function of field-
dependent temperatureT̂ rather than of the field-independent
T. This eliminates the dependence ofP̂g on mixed variables,
which is characteristic of Eq.~55!.

Fundamental equation

In the absence of fields, the fundamental equation can be
expressed in the following equivalent forms:

U5U~S,V,N!, ~69!

S5S~U,V,N!. ~70!

In the presence of the field,U andS are replaced byÛ and
Ŝ. However, as shown below, the functional relationship of
Eqs. ~69! and ~70!, i.e., Û5Û(Ŝ,V,N) and Ŝ5Ŝ(Û,V,N),
does not hold.

At fixed B the field-dependent entropyŜ is given by
@1,5,6#

Ŝ5S1 1
2V

B2

m2 S ]m

]T D
r

. ~71!

At fixed H the sign of the magnetic term is reversed. Multi-
plying both sides of Eq.~71! by T gives

TŜ5TS1 1
2V

B2

m2 TS ]m

]T D
r

. ~72!

It is clear thatT(]m/]T)r can be presented in terms ofm,

T~]m/]T!r5a~S,V,N!m~S,V,N!1b~S,V,N!, ~73!

wherea(S,V,N) and b(S,V,N) are factors accounting for
the possible nonlinear dependence ofm on T. Note that for
ideal gases, using Eq.~52!, we find thatT(]m/]T)r52m8,
and hence@see Eq.~28!# in this case,a andb are constants:
a(S,V,N)521 andb(S,V,N)5m0. By virtue of Eqs.~1!,
~2!, and~12!, Eq. ~72! can be expressed as

TŜ5TS2~a1b/m!U1~a1b/m!Û. ~74!

SinceT, a, b, andU are all functions ofS, V, andN, it
follows that

Ŝ5Ŝ~S,V,N,Û !, ~75!

and hence

Û5Û~S,V,N,Ŝ!. ~76!

In the absence of field,Û5U and Ŝ5S and Eqs.~75! and
~76! reduce to Eqs.~70! and ~69!, respectively. However, in
the presence of the fieldŜ is a function of four variables,
three of which are field independent, and the fourth isÛ.
Similarly, Û is a function of the same field-independent vari-
ables andŜ. The fourth field-dependent variable, by its very
nature, is a consequence of the presence of the field. Equa-
tions ~75! and ~76! can be derived using the following dif-
ferent approach. By virtue of Eqs.~6! and ~8!

UM5UM~V,B,m!5UM~S,V,N,B!. ~77!

Hence@see Eqs.~1! and ~12!#

Û5Û~S,V,N,B!. ~78!

Equation~71! in conjunction with Eq.~6! shows that

Ŝ5Ŝ~S,V,N,B!. ~79!

Eliminating B between Eqs.~78! and ~79! yields Eqs.~75!
and ~76!.

Note that, by virtue of Eqs.~16!–~18! in conjunction with
Eqs.~76! and~78!, the field-dependent variablesT̂, P̂, andẑ
are also functions of the setS, V, N, andŜ or its equivalent
S, V, N, and B. In the absence of the field, the entropic
formulation of the fundamental equation for ideal monatomic
gas is given by@3#

s5so1
3
2R ln

T

To
1R ln

v
vo
, ~80!
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where the subscripto indicates a reference state. Hence, in
the presence of a magnetic field,

ŝ5so1
3
2R ln

T

To
1R ln

v
vo

1
~21!k

2r
H2S ]m

]T D
r

, ~81!

where, at fixedB, k50, whereas at fixedH, k51.
The energy density of the gas is given by

u5 3
2RT. ~82!

Solving Eq.~82! for T and substituting the result in Eq.~81!
gives

ŝ5so1
3

2
R ln

u

uo
1R ln

v
vo

1
~21!k

2r
H2S ]m

]T D
r

. ~83!

The information in Eq.~83! will be complete once the func-
tional dependence of~]m/]T!r onm andu is known. Such a
relation is given by Eq.~52!, which can be presented@using
Eq. ~82!# as a function ofm8 andu in the following form:

~]m/]T!r52m8Y S 23 u

RD . ~84!

Using Eq.~29b! and combining Eqs.~83! ~for k50! and~84!
gives

ŝ5s01
3

2
R ln

u

u0
1R ln

v
v0

1F ~ ûg2u!Y S 23 u

RD G m0

m
, B fixed, ~85!

where, by virtue of Eqs.~38!, ~45!, and ~82!, m5m0„11C/
@ 23(u/R)#…. Recalling thatu5u(s,v) and û5û~s,v,B!, it is
seen that

ŝ5 ŝ~s,v,û!5 ŝ~s,v,B!. ~86!

Equation ~86! is equivalent to Eqs.~75! and ~79!. Similar
reasoning leads to the same conclusion whenH instead ofB
is held fixed.

At fixed B the energy representation of the fundamental
equation can be obtained by combining Eqs.~29b! and~82!,
and the solution ofT, i.e.,T5T(s,v,ŝ), from Eq. ~81!,

û5 3
2RT~s,v,ŝ!2

1

2r
m8H2~m/m0!. ~87!

Since the magnetic term is also a function ofs, v, andB, and
hence also ofs, v, and ŝ, we have

û5û~s,v,ŝ!5û~s,v,B!. ~88!

Equation~88! is equivalent to Eqs.~76! and ~78!.

Specific heat in the presence of field

The specific heat at fixed volume is defined by

Cv5
1

N S dQdTD
V

. ~89!

For the case of an ideal gas,

du5cvdT, ~90!

where in the case of a monatomic gas,

cv5
3
2R. ~91!

It follows that @see Eq.~1!#

dû5cvdT1dS 1

2r
mH2D . ~92!

At fixed B andr ~sincev51/r is fixed!,

dûB5Fcv2 1

2r
H2~]m/]T!rGdT. ~93!

Equation~93! facilitates the definition of the following field-
dependent specific heat at fixedB andv,

ĉv,B5cv2
1

2r
H2~]m/]T!r5cv1

1
6R~m0mH/kT!2.

~94!

The counterpart ofĉv,B at fixedH andv is

ĉv,H5cv1
1

2r
H2~]m/]T!r5cv2

1
6R~m0mH/kT!2,

~95!

where, in deriving the right-hand side of Eqs.~94! and~95!,
use was made of Eqs.~45!, ~46!, and~52!. It follows that

dû5 ĉv,bdT, ~96!

whereb[B at fixedB, whereasb[H at fixedH. Note that
ĉv,B is larger thanĉv,H by 2~1/r!H2(]m/]T)r . This reflects
the fact that when matter is heated bydT, at fixedB, its
energy increases by2~1/2r!H2(]m/]T)rdT, whereas the re-
verse applies whenH is held fixed.

In the case of ideal gases,m can be presented as a func-
tion of P andT, instead ofr andT as given by Eq.~51!.
Using this form ofm gives

dm5~]m/]P!TdP1~]m/]T!PdT. ~97!

Thus in order to define a specific heat at fixed pressure in the
presence of the field, it is sufficient to replace, in Eqs.~94!
and~95!, cv by cP and~]m/]T!r by (]m/]T)P . Substitution
of Eqs.~49! and~50! in Eq. ~38! and then differentiating the
result at fixedP gives

~]m/]T!P52 2
3rR~m0m/kT!2. ~98!

Hence the counterparts of Eqs.~94! and ~95! for the case of
fixed P are

ĉP,B5cP1 1
3R~m0mH/kT!2, ~99!

ĉP,H5cP2 1
3R~m0mH/kT!2. ~100!

Subtracting Eq.~94! from Eq. ~99!, and recalling that
cP2cv5R, gives
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ĉP,B2 ĉv,B5cP2cv1
1
6R~m0mH/kT!2

5R@11 1
6 ~m0mH/kT!2#, ~101!

ĉP,H2 ĉv,H5cP2cv2
1
6R~m0mH/kT!2

5R@12 1
6 ~m0mH/kT!2#. ~102!

Equations~94! and ~99! show that a fixedB field increases
the field-dependent heat capacities at either fixedv or fixed
P. The reverse is true ifH instead ofB is held fixed. The
effect of the field at fixed pressure is twice as large as com-
pared to the one at fixed specific volume.

B. Discrete systems

A hollow sphere, consisting of a thin spherical shell that
contains the gas and is placed in a uniform external fieldH0,
is used here as an illustrative discrete system. The sphere is
denoted by subscript 1, and its surroundings by subscript 2.

It is shown elsewhere@2# that the net magnetic energy
UM18 of this sphere~i.e., in excess of that prevailing in its
absence! is given by

UM18 5 1
2V1m2

m12m2

m112m2
H0
2. ~103!

This energy of the sphere consists of two parts that are stored
within and outside its boundaries. The spherical shell that
encloses the gas has the permeabilitym2, and is thin to the
extent that any effect it might have on the field can be ne-
glected. The volume of the gas isV1, and its permeability is

m1. The permeability outside the sphere ism2. The sphere
maintains its shape irrespective of its volume. This is a con-
straint related to the shape of a discrete system, and here the
sphere volume can only be changed at fixed shape, i.e., no
distortion in the latter is allowed. Differentiation of Eq.~103!
followed by collection of terms gives

dUM18 5 1
2m2

m12m2

m112m2
H0
2dV11

1
2 V1

3m2
2

~m112m2!
2 H0

2dm1

1 1
2V1

m1
222m1m222m2

2

~m112m2!
2 H0

2dm2

1V1m2

m12m2

m112m2
H0dH0 . ~104!

The change in the permeabilitymi , i51 and 2, can be ex-
pressed as@1#

dm i5S ]m i

]r i
D
T

1

Vi
~dNi2r idVi !1S ]m i

]Ti
D

r

dTi ,

i51 and 2, ~105!

where subscriptsT and r mean that the temperature and
density are held fixed in the region for which the derivative
is evaluated.

Combining Eqs. ~104! and ~105!, and letting dV2
5(]V2/]V1)dV1 , dN25(]N2/]N1)dN1 , and dT2
5(]T2/]T1)dT1 , givesdUM18 as a function ofV1, N1, T1,
andH0:

dUM18 5F12 m2

m12m2

m112m2
2
1

2

3m2
2

~m112m2!
2 r1S ]m1

]r1
D
T

2
1

2

V1

V2

m1
222m1m222m2

2

~m112m2!
2 r2S ]m2

]r2
D
T

]V2

]V1
GH0

2dV1

1F12 3m2
2

~m112m2!
2 S ]m1

]r1
D
T

1
1

2

V1

V2

m1
222m1m222m2

2

~m112m2!
2 S ]m2

]r2
D
T

]N2

]N1
GH0

2dN11F12 V1

3m2
2

~m112m2!
2 S ]m1

]T1
D

r

1
1

2
V1

m1
222m1m222m2

2

~m112m2!
2 S ]m2

]T2
D

r

]T2
]T1

GH0
2dT11V1m2

m12m2

m112m2
H0dH0 . ~106!

Note that the use of partial derivatives, in the expressions
@preceding Eq.~106!# for dV2, dN2, anddT2, is due to the
option to hold different system variables fixed as these ex-
pressions vary. Specific cases, such as holdingV5V11V2
fixed, when evaluatingdV2, are specified below.

Equation~106! facilitates the definition of the following
counterparts of Eqs.~19!–~21! for the case of a sphere in a
fixed H0 field,

T̂D5T1~]UM18 /]S1!V1 ,N1 ,H0
, ~107!

P̂D5P2~]UM18 /]V1!S1 ,N1 ,H0
, ~108!

ẑD5z1~]UM18 /]N1!S1 ,V1 ,H0
, ~109!
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where subscriptD indicates that the system is discrete:

~]UM18 /]S1!V1 ,N1 ,H0
5
1

2
V1F 3m2

2

~m112m2!
2 S ]m1

]T1
D

r

1
m1
222m1m222m2

2

~m112m2!
2 S ]m2

]T2
D

r

]T2
]T1

G
3H0

2S ]T1
]S1

D
V1 ,N1 ,H0

, ~110!

~]UM18 /]V1!S1 ,N1 ,H0
5
1

2 Fm2

m12m2

m112m2

2
3m2

2

~m112m2!
2 r1S ]m1

]r1
D
T

2
V1

V2

m1
222m1m222m2

2

~m112m2!
2

3r2S ]m2

]r2
D
T

]V2

]V1
GH0

2, ~111!

~]UM18 /]N1!S1 ,V1 ,H0
5
1

2 F 3m2
2

~m112m2!
2 S ]m1

]r1
D
T

1
V1

V2

m1
222m1m222m2

2

~m112m2!
2

3S ]m2

]r2
D
T

]N2

]N1
GH0

2, ~112!

where in deriving Eq. ~110! use was made ofdT1
5(]T1 /]S1)V1 ,N1 ,H0

dS1.
There are several combinations of constraints that can be

imposed on the sphere and the field that surrounds it. For
example, consider the following sets of constraints:

~a! Fixed V, N, and uniform temperature:

V5V11V25const, ~113!

N5N11N25const, ~114!

T5T15T2 . ~115!

From Eqs.~113! and ~114!, ]V2/]V15]N2/]N1521, and
Eq. ~115! gives ]T2/]T151. Note that in the first, second,
and third partial derivatives,V, N, and T are held fixed,
respectively.

~b! Fixed V2, N, and uniform temperature:
In this case,]V2/]V150, ]N2/]N1521, and]T2/]T151.

~c! Fixed V, N2, and uniform temperature:
In this case,]V2/]V1521, ]N2/]N150, and]T2/]T151.

If the sphere is insulated, thenT2 may be held at an arbi-
trary level compared toT1. Thus holdingT2 fixed at variable
T1 gives ]T2/]T150, and the above sets can be repeated
subject to changing]T2/]T1 from 1 to 0.

Suppose that no change is allowed in the surroundings of
the sphere as its own variables change. This means thatV2,
N2, andT2 and hence alsor2 andm2 are held fixed, asV1,
N1, andT1 are varied. In this case it can readily be shown
that

~]UM18 /]S1!V1 ,N1 ,H0
5

1

6r1
H1
2S ]m1

]s1
D
V1 ,N1 ,H0

, ~116!

2~]UM18 /]V1!S1 ,N1 ,H0
5 1

6H1
2r1S ]m1

]r1
D
T

2 1
18m1F ~m12m2!~m112m2!

m1m2
GH1

2,

~117!

~]UM18 /]N1!S1 ,V1 ,H0
5 1

6H1
2S ]m1

]r1
D
T

, ~118!

whereH1 is the field within the sphere@4#,

H15
3m2

m112m2
H0 . ~119!

Comparing Eqs.~116!–~118! and the respective magnetic
terms in Eqs.~23!–~25! shows that they have similar forms.
The factor 12 in Eqs. ~23! and ~25! is replaced by16 in Eqs.
~116! and~118!. The same applies to the first magnetic term
on the right-hand side of Eq.~24!, where the factor12 is
replaced by16 in the respective term of Eq.~117!. In the
second magnetic term, the12 is replaced by 1

18

@~m12m2!~m112m2!#/m1m2. These changes are a reflection of
the effect of the geometry of the sphere. Suppose that we
relax the constraint that no change in the surroundings of the
sphere is allowed. Instead we impose seta of constraints,
according to whichV and N are fixed andT15T25T is
uniform. Recalling that for this set of constraints
]V2/]V15]N2/]N1521, we obtain
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~]UM18 /]S1!V1 ,N1 ,H0
5

1

6r1
H1
2S ]m1

]s1
D

r

1
1

18r1

m1
222m1m222m2

2

m2
2 S ]m2

]T2
D

r
S ]T

]s1
D

r,H0

H1
2, ~120!

2~]UM18 /]V1!S1 ,N1 ,H0
5 1

6H1
2r1S ]m1

]r1
D
T

2 1
18 H m1F ~m12m2!~m112m2!

m1m2
G1

V1

V2

m1
222m1m222m2

2

m2
2 r2S ]m2

]r2
D
T

JH1
2,

~121!

~]UM18 /]N1!S1 ,V1 ,H0
5
1

6 S ]m1

]r1
D
T

H1
22

1

18

V1

V2

m1
222m1m222m2

2

m2
2 S ]m2

]r2
D
T

H1
2. ~122!

It is seen that changing the constraints results in a significant
change in Eqs.~116!–~118!. For example, ifm1/m2 is suffi-
ciently large, then Eq.~122! is expected to yield a result that
is smaller than the one predicted by Eq.~118!.

The equation of state of the gas in the sphere can be
obtained by elimination ofT between Eqs.~107! and ~108!
following the substitution ofP5rRT in Eq. ~108!. This
gives

P̂D5rRT̂D2rR~]UM18 /]S1!V1 ,N1 ,H0

2~]UM18 /]V1!S1 ,N1 ,H0
, ~123!

where the first and second partial derivatives are given by
Eqs. ~110! and ~111!, respectively. Since these derivatives
depend on the constraints that are imposed on the sphere and
its surroundings, so does the equation of state of the gas
which is confined inside the sphere. In this sense this equa-
tion of state is not unique.

Equations~107!, ~108!, and ~123! are general in form.
Therefore, in the presence of the field, the equation of state
of the gas~which is confined within a discrete system! in-
volves effects due to the contents and constraints set on both
the system and its surroundings. Equations~116!–~118! and
~120!–~122! are specific examples how different sets of con-
straints~e.g., which are imposed on the sphere and its sur-
roundings! produce different results for the partial deriva-
tives of Eq.~123!, and hence also different equations of state.

C. Mixture of ideal gases

If an ideal gas consists of a mixture of ideal gases, then,
according to the Gibbs theorem, each gas in the mixture
behaves as if it were alone and independent of the other
gases. In such a mixture, the gases do not interact with each
other. In what follows, the validity of the Gibbs theorem in
the presence of electromagnetic fields is considered.

The permeability of a mixture consisting ofn different
gases is given by

m5m0S 11(
i51

n

x i D , ~124!

where xi is the susceptibility of thei th gas at the given
temperature and pressure,i51,2,...,n.

Applying Eqs. ~28! and ~38! to the i th gas shows that
m0x i5m i8 , and hence Eq.~124! takes the following conve-
nient form:

m85(
i51

n

m i8 . ~125!

Equation~125! indicates that, as regards permeabilities, the
net contributions of the gases are additive, as expected.

The same applies to the additivity of densities in the mix-
ture,

r5(
i51

n

r i . ~126!

Sincem85Kr andm i85Kir i , it follows that

K5(
i51

n

Kir iY (
i51

n

r i . ~127!

Equation ~30! holds for this gas mixture, since it can be
treated as a uniform and continuous phase. This gives

Û5U1 1
2Vm8H2,

wherem8 satisfies Eq.~125!.
Using this result and the Gibbs theorem for the additivity

of energy in the absence of fields, i.e.,U5( i51
n Ui , in con-

junction with Eq.~125!, gives

Û5(
i51

n

Û i , Û i5U11
1
2Vm i8H

2. ~128!

At fixed H, the entropy of the mixture is given by Eq.~71!
with the sign of the magnetic term reversed@2#. Hence, using
Eq. ~125! in conjunction with Eq.~28! and applying the
Gibbs theorem for the additivity of entropy in the absence of
fields, i.e.,S5( i51

n Si , gives

Ŝ5(
i51

n

Ŝi , Ŝi5Si2
1
2VH

2~]m i /]T!r , ~129!

where here subscriptr implies thatri is fixed.
It follows from Eqs.~128! and~129! that the Gibbs theo-

rem for a mixture of ideal gases holds in the absence as well
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as in the presence of fixed intensity quasistatic magnetic
fields. The effect of the field on the entropy of mixing is
considered next.

Combining Eqs.~45!, ~46!, ~52!, and ~71! for a one-
component ideal gas that is in a fixedB field, and using
R5Ñk, gives

Ŝ5S2 1
6RN~m0mH/kT!2. ~130!

Suppose a rectangular container is divided inton compart-
ments byn21 planar, very thin, parallel partitions. Thei th
compartment containsNi moles of thei th gas, and the field
there isHi . The container is placed in the field so thatBi5B
is satisfied for alli , whereB is uniform and fixed. This is
achieved by setting the partitions perpendicular toB and by
making the distance between partitions small as compared to
their other dimensions, thus minimizing end effects, so that
they can be neglected.

The total entropy of these separately held gases under a
fixed B field is

Ŝ5(
i51

n

@Si2
1
6RNi~m0miHi /kT!2#. ~131!

Upon removal of the partitions and completion of mixing of
all gases into one homogeneous and uniform mixture of vol-
umeV5( i51

n Vi , the system aquires a different overall per-
meability. The susceptibility of the mixture is the sum of the
susceptibilities of the individual gases. This gives@see Eqs.
~45! and ~46!#

x5(
i51

n

C~r i !/T5
1

3V
Rm0(

i51

n

Ni~mi /k!2/T. ~132!

Combining Eqs.~38! and~132! gives the permeability of the
mixture as

m5m01
1

3V
R(
i51

n

Ni~m0mi /k!2/T. ~133!

Evaluation of~]m/]T!r by differentiation of Eq.~133!, and
then combining Eqs.~2! and ~71! for the mixture, yields

Ŝm5Sm2 1
6R(

i51

n

Ni~m0miH/kT!2, ~134!

where the subscriptm denotes a property of the mixture, and
H is the modulus of the field inV.

The entropy of mixing, at fixedB, is obtained by subtract-
ing Eq. ~131! from Eq. ~134!. The result is

Ŝm2(
i51

n

Ŝi5Sm2(
i51

n

Si1
1
6R(

i51

n

Ni~m0miH/kT!2

3~Hi
2/H221!. ~135!

At uniform and fixedB, H i
2/H25m2/m i

2, i51,2,...,n. It fol-
lows that if ( i51

n m2/m i
2.1, then the magnetic part of the

entropy of mixing is positive; otherwise it either vanishes or
it is negative. In what follows we investigate the change in
permeabilities due to the mixing effect. Since each gas be-

haves as if it were alone~i.e., irrespective of the presence of
the other gases!, it is sufficient to show that the expansion of
the i th gas ~e.g., fromVi into the spaceV2Vi , which is
initially free of this gas! results in an increase of the perme-
ability of V. Thus, disregarding the other gases, the problem
reduces to expansion of thei th gas fromVi into the space
which is free of it inV2Vi .

Before the expansion, the averaged effective permeability
of the container system~i.e., ofV! with respect to the exclu-
sive contribution of thei th gas,m i

a, is given by

1

m i
a 5

xi
m i

1
12xi
m0

, xi5Vi /V. ~136!

Manipulating Eq.~136! in conjunction with Eq.~53! for the
i th gas, and usingr i5Ni /Vi , gives

1

m i
a 5

KiNi /Vi1m02xiKiNi /Vi

~KiNi /Vi1m0!m0
. ~137!

After expansion, the permeability ofV, e.g., with respect to
the exclusive contribution of thei th gas, has changed tom i

b,

m i
b5KiNi /V1m0 . ~138!

Hence

m i
b/m i

a5F ~12xi !KiNi /Vi1m0

KiNi /Vi1m0
GFKiNi /V1m0

m0
G .

~139!

Equation ~139! shows that if xi→0, then
m i

b/m i
a5KiNi /(m0V)11, and hence~recalling that for per-

meable gasesKi.0! m i
b.m i

a. It follows that if we divide
each gas intoj 1 infinitesimally thin layers of thickness
Dxj→0, so thatxi5( j51

j 1 Dxj , then@by Eq. ~139!# upon ex-
pansion, each thin layer contributes to the increase of the
permeability ofV. Thus, at fixedB, the expansion of all the
n gaseous layers increases the permeability of the container
system and, hence, in the presence of the magnetic field, the
entropy of mixing at fixedB is larger than in its absence.
However, ifH, instead ofB, is held fixed, then the magnetic
entropy of mixing vanishes.

D. Transformation of the results to electroquasistatic fields

The results obtained hitherto for continuum and discrete
systems in magnetoquasistatic fields can be transformed to
electroquasistatic fields by replacing the setm, H, andB by
«, E, andD, respectively. Here,« is electric permittivity,E is
the electric field strength, andD is the electric displacement.
The electric polarizationPE should replacem0M . Further-
more, variables that are functions of the magnetic set must
also be replaced by appropriate electric notation. For ex-
ampleUM , UM18 , m8, x, andm can be replaced byUe ,
Ue18 , «8, xe , andme , where the subscripte denotes that the
variable expresses an electric quantity.

SUMMARY AND CONCLUSIONS

~1! The thermodynamic properties of a continuum in the
presence of electromagnetic fields, at either fixedB orH, can
be described by two conjugate sets of variables. These two
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sets consist of the variablesS, V, andN andT̂, P̂, andẑ. The
first set, i.e.,S,V,N, prevails in the absence of fields and in
this respect, it is ‘‘field independent.’’ The variables of the
second set are functions of the first set as well as of the field,
and in this respect they are ‘‘field dependent.’’ In the ab-
sence of fields, the setT̂,P̂,ẑ reduces toT,P,z.

~2! The field-dependent energyÛ cannot be obtained by
Euler integration ofdÛ holding T̂, P̂, andẑ fixed. However,
if dÛ is separated into field-independent and field-dependent
exact differentials, then it can be Euler integrated holdingT,
P, andz fixed.

~3! In the presence of electromagnetic fields, the setT̂, P̂,
and ẑ has the same thermodynamic role which is character-
istic of the setT, P, and z prevailing when the fields are
absent. It follows that, at equilibrium,T̂, P̂, and ẑ must be
uniform in continua that are under the action of fields. This
can result in the occurrence of discontinuous jumps inT, P,
and z across interfaces that separate materials of different
electromagnetic properties. Systems that have different mag-
netic properties and share a common interface are driven by
the field to change their equilibrium values ofT, P, and z
which prevail in its absence.

~4! If ( ]m/]s)V,N,0 and ~]m/]r!S,N.0, as is the case
with ideal gases and the majority of liquids and solids, then,
at fixedB, T̂.T, P̂,P, andẑ,z. If H, instead ofB, is held
fixed, then for ideal gases,T̂,T, P̂5P and ẑ.z. For gases
that follow the Langevin equation in a fixedB field P̂g.P,
whereas ifH is fixed P̂g5P.

~5! Equations of state of an ideal gas in the presence of
fields have been derived. In the absence of fields, these equa-
tions reduce to the ordinary equation of state of an ideal gas.

~6! Two different magnetic susceptibilities can be defined
for ideal gases that follow the Langevin equation. One sus-
ceptibility xv is defined at fixed density, or fixed specific
volumev, and the other,xP , is defined at fixed pressureP.
The first susceptibility, i.e.,xv , is proportional to 1/T, and
consequently it follows the Curie-Weiss law. The second
susceptibility, i.e.,xP , follows a different law since it is
proportional to 1/T2. These susceptibilities are the conse-
quence of imposing the above constraints on the gas, i.e., in
the same way that they give rise to the well-known heat
capacities at fixed volumecv and fixed pressurecP .

~7! The fundamental equation of an ideal gas in the pres-
ence of fields can be presented in the following alternative
formulations: energy formulationÛ5Û(S,V,N,Ŝ) and en-
tropic formulationŜ5Ŝ(S,V,N,Û). These formulations are
also a consequence of the fact thatÛ and Ŝ are both func-
tions ofS, V, N, andB.

~8! Specific heats of ideal gases, with positive susceptibil-
ity in the presence of fields, have been formulated. At fixed
B, the field increasescv ~which prevails in its absence! by
~1/6! R(m0mH/kT)2, whereas at fixedH, cv is decreased by
the same amount. If the gases have negative susceptibilities,
then the reverse of the above applies. The following relations
between field-dependent heat capacities have also been es-
tablished:

ĉv,B2 ĉv,H5 1
2 ~ ĉP,B2 ĉP,H!5 1

3R~m0mH/kT!2,

ĉp,B2 ĉv,B5R@11 1
6 ~m0mH/kT!2#5 ĉp,H2 ĉv,H

1 1
3R~m0mH/kT!2.

~9! Ideal gases that are contained in discrete systems and
are placed under the action of electromagnetic fields, can be
characterized thermodynamically by the setsS, V, andN and
T̂D , P̂D , and ẑD . The setT̂D , P̂D , and ẑD depends on the
geometry of the system and the constraints imposed on it.
This set is expected to be different from the setT̂, P̂, and ẑ
that characterizes a continuum.

~10! The equation of state of an ideal gas that is contained
in a discrete system has been formulated. This equation of
state depends on the geometry and constraints of the system
and its surroundings and in this sense it is not unique.

~11! The Gibbs theorem, with respect to ideal gases, holds
in the presence as well as in the absence of fixed intensity
electromagnetic fields.

~12! The expansion of permeable ideal gases, within a
confined space of volumeV, increases the permeability ofV.

~13! The entropy of mixing of permeable ideal gases, in
the presence of a uniform and fixedB magnetic field, is
larger than the entropy of mixing of these gases in the ab-
sence of the field. In this sense the effect of a fixedB field is
to increase the entropy of mixing of permeable ideal gases.
However, ifH instead ofB is held fixed in the mixing pro-
cess, then no increase of entropy of mixing due to the field is
expected to occur.

APPENDIX A: VERIFICATION OF EQ. „12…

We express~in addition toUM! the hypothetical effect of
the field, on each of the ordinary thermodynamic variables,
by adding a hypothetical field-dependent increment in the
form DZ, whereZ is T, S, P, V, z, andN. In the absence of
the fieldDZ50, and Eq.~11! prevails, whereas in the pres-
ence of the field whereDZÞ0 we have

Û5~T1DT!~S1DS!2~P1DP!~V1DV!

1~z1Dz!~N1DN!1UM

5TS2PV1zN1UM~DZ!1UM , ~A1!

where

UM~DZ!5DT~S1DS!1TDS2DP~V1DV!2PDV

1Dz~N1DN!1zDN. ~A2!

However the total magnetic energy that is stored in the field
is known to be exactly equal toUM , so that

UM1UM~DZ!5UM ~A3!

must be satisfied, and hence

UM~DZ!50. ~A4!

This shows thatÛ is given by

Û5TS2PV1zN1UM . ~A5!

Equation~A5! agrees with Eq.~12! to the extent that even if
we hypothesize that the field changes the conventional ther-
modynamic variables, apart from the effect ofUM , then the
overall effect cancels out. This justifies using these variables
as being independent of the field.
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Furthermore, the result expressed by Eq.~A5! and the fact
@see Eqs.~12!–~14!# that

dÛ5dU1dUM5T dS2P dV1z dN1dUM ~A6!

show thatS, V, andN, and hence alsoU, T, P, andz must
indeed be independent ofUM . The very existence of the field
does not change variables that prevail in its absence. If it
were not so, thenUM cannot be arbitrarily changed holding
the setS, V, and N fixed, and vice versa. Recalling that
UM5UM(S,V,N,B!, it follows that, at fixedS, V, andN,
UM5UM(B! can be changed independently and by magnetic
means only, i.e., as a sole function ofB. It must be clear that
UM5UM(B! implies its exclusive dependence on the source
of the field B and not on the contents and volume of the
system whereUM is evaluated.

We turn now to examine an alternative analysis, that uses
the energy differential, as a starting point, to derive Eq.~12!.
Suppose Eq.~15! is not known and we seek a general ex-
pression for the field-dependent energy differential. We start
by writing the energy differentialdÛ in a form that makes a
clear distinction between the part due to system variables,
and the part due to the effect of the current sources~denoted
by subscriptC! of the field,

dÛ5(
i50

n

ĵ idXi1dUMC . ~A7!

By definition, the variablesĵ i are functions of the extensive
variablesX0 ,...,Xn and the field, anddUMC is the change in
the magnetic energy due to the exclusive action of the cur-
rent sources of the field. Since the current sources are, by
definition, independent of the system variables all terms of
Eq. ~A7! are independent, as required.

Thus ĵ idXi represents the change in energy due to a
change inXi , at the conditions set by the current sources of
the field. These conditions, and the constraints set on the
field, determine the wayĵ i depends on the field. Similarly,
dUMC expresses the net effect of the current sources on the
system, which is characterized by a given set of extensive
variables, i.e., at fixedXi , i50,1,...,n.

It follows that this differential must express the magnetic
work done by the current sources on the system, e.g., at fixed
Xi , i50,...,n, and hence it is given by

dUMC5VH•dB, ~A8!

where dB is set ~at fixed Xi , i50,...,n! by the current
sources only.

Combining Eqs.~A7! and ~A8! gives

dÛ5(
i50

n

ĵ idXi1VH•dB, ĵ i5~]Û/]Xi !Xj ,B ,

jÞ i , i , j50,...,n . ~A9!

Since the variablesĵ i are state variables, they must be sepa-
rable into field-independent and field-dependent parts

ĵ i5j i1jMi , ~A10!

where

j i5~]U/]Xi !Xj , jÞ i , i , j50,...,n ~A11!

is the partial derivative of the energyU5Û~B50!, that pre-
vails in the absence of the field~e.g., atB50!, with respect
to Xi , and

jMi5~]UM /]Xi !Xj ,B , jÞ i , i , j50,...,n ~A12!

is the partial derivative of the magnetic energyUM with
respect toXi , at fixedB.

Supposeĵ i were not separable, in the form specified by
Eq. ~A10!. Then removal of the field would not yield
ĵ i~B50!5ji , and turning the field on, at fixedji , would not
increaseĵ i from its value atB50 by jMi , as required.

Combining Eqs.~A9!–~A12!, followed by rearrangement
of terms, gives

dÛ5(
i50

n

~]U/]Xi !XjdXi1(
i50

n

~]UM /]Xi !Xj ,BdXi

1VH•dB. ~A13!

The first sum on the right-hand side of Eq.~A13! is readily
identified as the energy differentialdU that prevails in the
absence of the field. The second sum combined with the third
term, on the right-hand side of Eq.~A13!, gives the total
differential of the magnetic energydUM . Hence

dÛ5dU1dUM . ~A14!

Upon integration of Eq.~A14!, Eq. ~12! is obtained. Com-
bining Eqs.~A10!, ~A11!, and~A12! gives

ĵ i5~]Û/]Xi !Xj ,B5~]U/]Xi !Xj1~]UM /]Xi !Xj ,B ,

jÞ i , i , j50,...,n. ~A15!

Equation~A15! is equivalent to Eqs.~16!–~18!.

APPENDIX B: DERIVATIVES OF T̂, P̂, AND ẑ WITH
RESPECT TO THE FIELD

Differentiation of Eq.~19! at fixedr andT gives

S ]T̂

]H D
r,T

52
1

r
HS ]m

]s D
V,N

. ~B1!

Differentiation of Eq.~20! at fixedr, T, andP gives

S ] P̂

]H D
r,T,P

52rHS ]m

]r
D
S,N

2mH. ~B2!

Differentiation of Eq.~21! at fixedr andT gives

S ]ẑ

]H D
r,T

52HS ]m

]r
D
S,V

. ~B3!

Equations~B1!–~B3! can be derived as Maxwell relations
using the Legendre transformation@see Eq.~15!#

d~Û2VHB!5T̂ dS2 P̂ dV1 ẑ dN2VB dH2HB dV

5T̂ dS2~ P̂1HB!dV1 ẑ dN2VB dH.

~B4!
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From Eq.~B4! we have

S ]T̂

]H D
S,V,N

52F ]~VB!

]S G
V,N,H

52
H

r
S ]m

]s D
V,N,H

, s5S/N.

~B5!

Sincem has been assumed to be independent ofH, it can be
dropped from the subscriptV,N,H of the rightmost deriva-
tive of Eq.~B5!. HoldingS, V, andN fixed means thatr and
T are also fixed. This shows that Eq.~B5! verifies Eq.~B1!,

F ]~ P̂1HB!

]H G
S,V,N

5F ]~VB!

]V G
S,N,H

5mH2rHS ]m

]r
D
S,N,H

.

~B6!

UsingHB5mH2, and the assumption thatm is fixed whenS,
V, andN are fixed, gives

S ] P̂

]H D
S,V,N

52rHS ]m

]r
D
S,N

2mH. ~B7!

If S, V, andN are fixed, thenr, T, andP are also fixed, so
that Eq.~B7! verifies Eq.~B2!:

S ]ẑ

]H D
S,V,N

52F ]~VB!

]N G
S,V,H

52VHS ]m

]ND
S,V,H

52HS ]m

]r
D
S,V,H

. ~B8!

Hence Eq.~B8! verifies Eq.~B3!.
Equation~B1! shows that if (]m/]s)V,N,0, as is the case

with gases and many other materials, then, at fixedr andT,
T̂ is an increasing function ofH. Equations~B2! and ~B3!

show that if ~]m/]r!S,N.0, as is the case with permeable
gases and other liquids and solids then, at fixedB, S, V, and
N, P̂ and ẑ are decreasing functions ofH.

APPENDIX C

Equation~4! shows thatT can be presented as a function
of r ands as follows:

T5T~S,V,N!5T~s,v !5T~r,s!, v51/r. ~C1!

Combining Eqs.~3! and ~C1! gives

m5m~r,s!. ~C2!

Differentiation of Eqs.~3! and ~C2! gives

dm5~]m/]r!Tdr1~]m/]T!rdT, ~C3!

dm5~]m/]r!sdr1~]m/]s!rds. ~C4!

Subtraction of Eq.~C4! from ~C3! gives

05@~]m/]r!T2~]m/]r!s#dr1~]m/]T!rdT2~]m/]s!rds.
~C5!

By virtue of Eqs.~C3! and~C4!, r must be independent ofT
ands, and vice versa. This constraint setsT as a sole func-
tion of s. It follows that the coefficient ofdr in Eq. ~C4!
must vanish, and hence

~]m/]r!T5~]m/]r!s5~]m/]r!S,N , ~C6!

where here use was made of the equivalence between fixing
s5S/N and fixing the pairS andN. Furthermore using, at
fixed r ~or also the constraint thatT is independent ofr!,
T5T(s) gives dT5(]T/]s)rds and (]m/]T)rdT
5(]m/]T)r(]T/]s)rds5(]m/]s)rds, the result being that
the second and third terms in Eq.~C5! cancel out.
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